BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32310110)

  • 1. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks.
    Musso M; Oliveira AS; Bai S
    Appl Ergon; 2024 Jan; 114():104158. PubMed ID: 37890312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review.
    Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW
    Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Effects of Using a Passive Exoskeleton for the Upper Limb in Industrial Manufacturing Activities: A Pilot Study.
    Coccia A; Capodaglio EM; Amitrano F; Gabba V; Panigazzi M; Pagano G; D'Addio G
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024; 77(4):1179-1188. PubMed ID: 37980590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities.
    de Vries AW; Krause F; de Looze MP
    Ergonomics; 2021 Jun; 64(6):712-721. PubMed ID: 33402050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task.
    Arnoux B; Farr A; Boccara V; Vignais N
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks.
    Hwang J; Kumar Yerriboina VN; Ari H; Kim JH
    Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a passive upper extremity exoskeleton for overhead tasks.
    Yin P; Yang L; Qu S; Wang C
    J Electromyogr Kinesiol; 2020 Dec; 55():102478. PubMed ID: 33075712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations.
    Kong YK; Park CW; Cho MU; Kim SY; Kim MJ; Hyun DJ; Bae K; Choi JK; Ko SM; Choi KH
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a passive arm-support exoskeleton for surgical team members: Results from live surgeries.
    Cha JS; Athanasiadis DI; Asadi H; Stefanidis D; Nussbaum MA; Yu D
    J Safety Res; 2024 Jun; 89():322-330. PubMed ID: 38858056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work.
    Schmalz T; Schändlinger J; Schuler M; Bornmann J; Schirrmeister B; Kannenberg A; Ernst M
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On neck muscle activity and load reduction in sitting postures. An electromyographic and biomechanical study with applications in ergonomics and rehabilitation.
    Schüldt K
    Scand J Rehabil Med Suppl; 1988; 19():1-49. PubMed ID: 3166203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a Passive Back-Support Exosuit on Erector Spinae and Abdominal Muscle Activity During Short-Duration, Asymmetric Trunk Posture Maintenance Tasks.
    Kang SH; Mirka GA
    Hum Factors; 2024 Jul; 66(7):1830-1843. PubMed ID: 37635094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of overhead work involving different heights and distances on neck and shoulder muscle activity.
    Shin SJ; Yoo WG
    Work; 2015 Jun; 51(2):321-6. PubMed ID: 24939113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction model of the effect of postural interactions on muscular activity and perceived exertion.
    Hellig T; Johnen L; Mertens A; Nitsch V; Brandl C
    Ergonomics; 2020 May; 63(5):593-606. PubMed ID: 32216547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.