These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 32310277)
1. Photoperiod and CO2 elevation influence morphological and physiological responses to drought in trembling aspen: implications for climate change-induced migration. Inoue S; Dang QL; Man R; Tedla B Tree Physiol; 2020 Jun; 40(7):917-927. PubMed ID: 32310277 [TBL] [Abstract][Full Text] [Related]
2. Longer photoperiods negate the CO Tedla B; Dang QL; Inoue S Physiol Plant; 2021 May; 172(1):106-115. PubMed ID: 33280131 [TBL] [Abstract][Full Text] [Related]
3. CO Tedla B; Dang QL; Inoue S Front Plant Sci; 2020; 11():506. PubMed ID: 32411171 [TBL] [Abstract][Full Text] [Related]
4. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
5. Contrasting acclimation responses to elevated CO Dusenge ME; Madhavji S; Way DA Glob Chang Biol; 2020 Jun; 26(6):3639-3657. PubMed ID: 32181545 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756 [TBL] [Abstract][Full Text] [Related]
7. Climate warming alters photosynthetic responses to elevated CO Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of elevated CO2 and warmer temperature on limitations to photosynthesis and carbon sequestration in yellow birch. Wang L; Zheng J; Wang G; Dang QL Tree Physiol; 2023 Mar; 43(3):379-389. PubMed ID: 36322135 [TBL] [Abstract][Full Text] [Related]
9. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339 [TBL] [Abstract][Full Text] [Related]
10. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Dreyer E; Le Roux X; Montpied P; Daudet FA; Masson F Tree Physiol; 2001 Mar; 21(4):223-32. PubMed ID: 11276416 [TBL] [Abstract][Full Text] [Related]
11. Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. Volin JC; Reich PB; Givnish TJ New Phytol; 1998 Feb; 138(2):315-325. PubMed ID: 33863086 [TBL] [Abstract][Full Text] [Related]
12. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations. Ambebe TF; Dang QL Tree Physiol; 2009 Nov; 29(11):1341-8. PubMed ID: 19797245 [TBL] [Abstract][Full Text] [Related]
13. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. Smith NG; Dukes JS Ecology; 2017 Nov; 98(11):2978. PubMed ID: 28833038 [TBL] [Abstract][Full Text] [Related]
14. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Scafaro AP; Xiang S; Long BM; Bahar NHA; Weerasinghe LK; Creek D; Evans JR; Reich PB; Atkin OK Glob Chang Biol; 2017 Jul; 23(7):2783-2800. PubMed ID: 27859952 [TBL] [Abstract][Full Text] [Related]
15. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light. Danyagri G; Dang QL PLoS One; 2013; 8(10):e76586. PubMed ID: 24146894 [TBL] [Abstract][Full Text] [Related]
16. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open-air experimental warming and reduced rainfall in a southern boreal forest. Stefanski A; Bermudez R; Sendall KM; Montgomery RA; Reich PB Glob Chang Biol; 2020 Feb; 26(2):746-759. PubMed ID: 31437334 [TBL] [Abstract][Full Text] [Related]
17. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change. Peltier DM; Ibáñez I Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758 [TBL] [Abstract][Full Text] [Related]
18. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Apgaua DMG; Tng DYP; Forbes SJ; Ishida YF; Vogado NO; Cernusak LA; Laurance SGW Tree Physiol; 2019 Dec; 39(11):1806-1820. PubMed ID: 31768554 [TBL] [Abstract][Full Text] [Related]
19. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
20. Drought characteristics' role in widespread aspen forest mortality across Colorado, USA. Anderegg LD; Anderegg WR; Abatzoglou J; Hausladen AM; Berry JA Glob Chang Biol; 2013 May; 19(5):1526-37. PubMed ID: 23504823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]