These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32310656)
1. Effect of Spacer Configuration on the Characteristics of FO Membranes: Alteration of Permeation Characteristics by Membrane Deformation and Concentration Polarization. Lee C; Jang J; Tin NT; Kim S; Tang CY; Kim IS Environ Sci Technol; 2020 May; 54(10):6385-6395. PubMed ID: 32310656 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488 [TBL] [Abstract][Full Text] [Related]
3. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation. Kim YC; Kim Y; Oh D; Lee KH Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240 [TBL] [Abstract][Full Text] [Related]
4. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. Lin W; Zhang Y; Li D; Wang XM; Huang X Water Res; 2021 Jun; 198():117146. PubMed ID: 33945947 [TBL] [Abstract][Full Text] [Related]
5. Fouling resilient perforated feed spacers for membrane filtration. Kerdi S; Qamar A; Vrouwenvelder JS; Ghaffour N Water Res; 2018 Sep; 140():211-219. PubMed ID: 29715645 [TBL] [Abstract][Full Text] [Related]
6. Impact of Forward Osmosis Operating Pressure on Deformation, Efficiency and Concentration Polarisation with Novel Links to CFD. Charlton AJ; Blandin G; Leslie G; Le-Clech P Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33652896 [TBL] [Abstract][Full Text] [Related]
7. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation. Lin WC; Shao RP; Wang XM; Huang X Water Res; 2020 Oct; 185():116251. PubMed ID: 32771564 [TBL] [Abstract][Full Text] [Related]
8. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091 [TBL] [Abstract][Full Text] [Related]
9. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis. Kim YC; Elimelech M Environ Sci Technol; 2012 Apr; 46(8):4673-81. PubMed ID: 22420537 [TBL] [Abstract][Full Text] [Related]
10. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Vrouwenvelder JS; Graf von der Schulenburg DA; Kruithof JC; Johns ML; van Loosdrecht MC Water Res; 2009 Feb; 43(3):583-94. PubMed ID: 19058830 [TBL] [Abstract][Full Text] [Related]
11. Impact of FO Operating Pressure and Membrane Tensile Strength on Draw-Channel Geometry and Resulting Hydrodynamics. Charlton AJ; Lian B; Blandin G; Leslie G; Le-Clech P Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32466224 [TBL] [Abstract][Full Text] [Related]
12. Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature? Kook S; Swetha CD; Lee J; Lee C; Fane T; Kim IS Environ Sci Technol; 2018 Mar; 52(6):3556-3566. PubMed ID: 29465233 [TBL] [Abstract][Full Text] [Related]
13. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization. Siddiqui A; Lehmann S; Haaksman V; Ogier J; Schellenberg C; van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS Water Res; 2017 Aug; 119():304-311. PubMed ID: 28501608 [TBL] [Abstract][Full Text] [Related]
14. Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Lay WC; Chong TH; Tang CY; Fane AG; Zhang J; Liu Y Water Sci Technol; 2010; 61(4):927-36. PubMed ID: 20182071 [TBL] [Abstract][Full Text] [Related]
15. Visualization of hydraulic conditions inside the feed channel of Reverse Osmosis: A practical comparison of velocity between empty and spacer-filled channel. Haidari AH; Heijman SGJ; van der Meer WGJ Water Res; 2016 Dec; 106():232-241. PubMed ID: 27723481 [TBL] [Abstract][Full Text] [Related]
16. Biofouling in forward osmosis systems: An experimental and numerical study. Bucs SS; Valladares Linares R; Vrouwenvelder JS; Picioreanu C Water Res; 2016 Dec; 106():86-97. PubMed ID: 27697688 [TBL] [Abstract][Full Text] [Related]
17. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Siddiqui A; Lehmann S; Bucs SS; Fresquet M; Fel L; Prest EIEC; Ogier J; Schellenberg C; van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS Water Res; 2017 Mar; 110():281-287. PubMed ID: 28027527 [TBL] [Abstract][Full Text] [Related]
18. Evidence, Determination, and Implications of Membrane-Independent Limiting Flux in Forward Osmosis Systems. Morrow CP; Childress AE Environ Sci Technol; 2019 Apr; 53(8):4380-4388. PubMed ID: 30887806 [TBL] [Abstract][Full Text] [Related]
19. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes. Coday BD; Heil DM; Xu P; Cath TY Environ Sci Technol; 2013 Mar; 47(5):2386-93. PubMed ID: 23363015 [TBL] [Abstract][Full Text] [Related]
20. A novel antifouling technique for the crossflow filtration using porous membranes: Experimental and CFD investigations of the periodic feed pressure technique. Zoubeik M; Salama A; Henni A Water Res; 2018 Dec; 146():159-176. PubMed ID: 30243059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]