BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32310941)

  • 1. Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies.
    Shang L; Smith JA; Zhou X
    PLoS Genet; 2020 Apr; 16(4):e1008734. PubMed ID: 32310941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies.
    Hao X; Zeng P; Zhang S; Zhou X
    PLoS Genet; 2018 Jan; 14(1):e1007186. PubMed ID: 29377896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.
    Wu M; Lin Z; Ma S; Chen T; Jiang R; Wong WH
    J Mol Cell Biol; 2017 Dec; 9(6):436-452. PubMed ID: 29300920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNP eQTL status and eQTL density in the adjacent region of the SNP are associated with its statistical significance in GWA studies.
    Gorlov I; Xiao X; Mayes M; Gorlova O; Amos C
    BMC Genet; 2019 Nov; 20(1):85. PubMed ID: 31718536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies.
    Shi X; Chai X; Yang Y; Cheng Q; Jiao Y; Chen H; Huang J; Yang C; Liu J
    Nucleic Acids Res; 2020 Nov; 48(19):e109. PubMed ID: 32978944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-trait association detection.
    Li Z; Zhao W; Shang L; Mosley TH; Kardia SLR; Smith JA; Zhou X
    Am J Hum Genet; 2022 May; 109(5):783-801. PubMed ID: 35334221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SC2disease: a manually curated database of single-cell transcriptome for human diseases.
    Zhao T; Lyu S; Lu G; Juan L; Zeng X; Wei Z; Hao J; Peng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1413-D1419. PubMed ID: 33010177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network.
    Richard AC; Peters JE; Lee JC; Vahedi G; Schäffer AA; Siegel RM; Lyons PA; Smith KG
    Genome Med; 2016 Jul; 8(1):76. PubMed ID: 27435189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Statistical Methods for Identifying Trait-Relevant Tissues and Cell Types.
    Zhu H; Shang L; Zhou X
    Front Genet; 2020; 11():587887. PubMed ID: 33584792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.
    Markunas CA; Johnson EO; Hancock DB
    Hum Genet; 2017 Jul; 136(7):911-919. PubMed ID: 28567521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scGWAS: landscape of trait-cell type associations by integrating single-cell transcriptomics-wide and genome-wide association studies.
    Jia P; Hu R; Yan F; Dai Y; Zhao Z
    Genome Biol; 2022 Oct; 23(1):220. PubMed ID: 36253801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network regression analysis for binary and ordinal categorical phenotypes in transcriptome-wide association studies.
    Zhang L; Ju T; Jin X; Ji J; Han J; Zhou X; Yuan Z
    Genetics; 2022 Nov; 222(4):. PubMed ID: 36227056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling regulatory network topology improves genome-wide analyses of complex human traits.
    Zhu X; Duren Z; Wong WH
    Nat Commun; 2021 May; 12(1):2851. PubMed ID: 33990562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPIC: Inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing.
    Wang R; Lin DY; Jiang Y
    PLoS Genet; 2022 Jun; 18(6):e1010251. PubMed ID: 35709291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Key Long Non-Coding RNAs in the Pathology of Alzheimer's Disease and their Functions Based on Genome-Wide Associations Study, Microarray, and RNA-seq Data.
    Han Z; Xue W; Tao L; Zhu F
    J Alzheimers Dis; 2019; 68(1):339-355. PubMed ID: 30776002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine.
    Gòdia M; Reverter A; González-Prendes R; Ramayo-Caldas Y; Castelló A; Rodríguez-Gil JE; Sánchez A; Clop A
    Genet Sel Evol; 2020 Dec; 52(1):72. PubMed ID: 33292187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.