These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32311021)

  • 1. A novel normalization and differential abundance test framework for microbiome data.
    Ma Y; Luo Y; Jiang H
    Bioinformatics; 2020 Jul; 36(13):3959-3965. PubMed ID: 32311021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An omnibus test for differential distribution analysis of microbiome sequencing data.
    Chen J; King E; Deek R; Wei Z; Yu Y; Grill D; Ballman K; Stegle O
    Bioinformatics; 2018 Feb; 34(4):643-651. PubMed ID: 29040451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An empirical Bayes approach to normalization and differential abundance testing for microbiome data.
    Liu T; Zhao H; Wang T
    BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accommodating multiple potential normalizations in microbiome associations studies.
    Song H; Ling W; Zhao N; Plantinga AM; Broedlow CA; Klatt NR; Hensley-McBain T; Wu MC
    BMC Bioinformatics; 2023 Jan; 24(1):22. PubMed ID: 36658484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ).
    Ling W; Zhao N; Plantinga AM; Launer LJ; Fodor AA; Meyer KA; Wu MC
    Microbiome; 2021 Sep; 9(1):181. PubMed ID: 34474689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust approach for identifying differentially abundant features in metagenomic samples.
    Sohn MB; Du R; An L
    Bioinformatics; 2015 Jul; 31(14):2269-75. PubMed ID: 25792553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive direction-assisted test for microbiome compositional data.
    Zhang W; Liu A; Zhang Z; Chen G; Li Q
    Bioinformatics; 2022 Jul; 38(14):3493-3500. PubMed ID: 35640978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rank normalization empowers a t-test for microbiome differential abundance analysis while controlling for false discoveries.
    Davis ML; Huang Y; Wang K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization and microbial differential abundance strategies depend upon data characteristics.
    Weiss S; Xu ZZ; Peddada S; Amir A; Bittinger K; Gonzalez A; Lozupone C; Zaneveld JR; Vázquez-Baeza Y; Birmingham A; Hyde ER; Knight R
    Microbiome; 2017 Mar; 5(1):27. PubMed ID: 28253908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To rarefy or not to rarefy: robustness and efficiency trade-offs of rarefying microbiome data.
    Hong J; Karaoz U; de Valpine P; Fithian W
    Bioinformatics; 2022 Apr; 38(9):2389-2396. PubMed ID: 35212706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero is not absence: censoring-based differential abundance analysis for microbiome data.
    Chan LS; Li G
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38331411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for differential abundance analysis of sparse microbiome data with group-wise structured zeros.
    Abegaz F; Abedini D; White F; Guerrieri A; Zancarini A; Dong L; Westerhuis JA; van Eeuwijk F; Bouwmeester H; Smilde AK
    Sci Rep; 2024 May; 14(1):12433. PubMed ID: 38816496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NetCoMi: network construction and comparison for microbiome data in R.
    Peschel S; Müller CL; von Mutius E; Boulesteix AL; Depner M
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33264391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data.
    Bai W; Dong M; Li L; Feng C; Xu W
    BMC Bioinformatics; 2021 Nov; 22(1):564. PubMed ID: 34823466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions.
    Yang L; Chen J
    Microbiome; 2022 Aug; 10(1):130. PubMed ID: 35986393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data.
    Chen L; Reeve J; Zhang L; Huang S; Wang X; Chen J
    PeerJ; 2018; 6():e4600. PubMed ID: 29629248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses.
    Li Z; Yu X; Guo H; Lee T; Hu J
    Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.