BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32311170)

  • 1. A Ternary Hybrid-Cation Room-Temperature Liquid Metal Battery and Interfacial Selection Mechanism Study.
    Guo X; Ding Y; Gao H; Goodenough JB; Yu G
    Adv Mater; 2020 Jun; 32(22):e2000316. PubMed ID: 32311170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Liquid-Metal-Enabled Versatile Organic Alkali-Ion Battery.
    Ding Y; Guo X; Qian Y; Zhang L; Xue L; Goodenough JB; Yu G
    Adv Mater; 2019 Mar; 31(11):e1806956. PubMed ID: 30663151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathode Dependence of Liquid-Alloy Na-K Anodes.
    Xue L; Gao H; Li Y; Goodenough JB
    J Am Chem Soc; 2018 Mar; 140(9):3292-3298. PubMed ID: 29429337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendrite-Free Potassium-Oxygen Battery Based on a Liquid Alloy Anode.
    Yu W; Lau KC; Lei Y; Liu R; Qin L; Yang W; Li B; Curtiss LA; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31871-31878. PubMed ID: 28849647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid K-Na Alloy Anode Enables Dendrite-Free Potassium Batteries.
    Xue L; Gao H; Zhou W; Xin S; Park K; Li Y; Goodenough JB
    Adv Mater; 2016 Nov; 28(43):9608-9612. PubMed ID: 27628913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Mg
    Hu X; Peng J; Xu F; Ding M
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57252-57263. PubMed ID: 34844407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting.
    Ding Y; Guo X; Qian Y; Xue L; Dolocan A; Yu G
    Adv Mater; 2020 Jul; 32(30):e2002577. PubMed ID: 32548922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Self-Healing Liquid Na-K Alloy for Dendrite-Free Electrochemical Energy Storage.
    Zhang L; Xia X; Zhong Y; Xie D; Liu S; Wang X; Tu J
    Adv Mater; 2018 Nov; 30(46):e1804011. PubMed ID: 30294814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite-Free Alkali-Metal-Ion Batteries.
    Ding Y; Guo X; Qian Y; Gao H; Weber DH; Zhang L; Goodenough JB; Yu G
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):12170-12177. PubMed ID: 32315509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance.
    Zhao HB; Hu CJ; Cheng HW; Fang JH; Xie YP; Fang WY; Doan TN; Hoang TK; Xu JQ; Chen P
    Sci Rep; 2016 May; 6():25809. PubMed ID: 27174224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rechargeable Mg-Na and Mg-K hybrid batteries based on a low-defect Co
    Chen D; Chen Z; Xu F
    Phys Chem Chem Phys; 2021 Aug; 23(32):17530-17535. PubMed ID: 34368820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries.
    Huang M; Xi B; Feng Z; Wu F; Wei D; Liu J; Feng J; Qian Y; Xiong S
    Small; 2019 Mar; 15(12):e1804916. PubMed ID: 30740881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries.
    Byeon A; Zhao MQ; Ren CE; Halim J; Kota S; Urbankowski P; Anasori B; Barsoum MW; Gogotsi Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4296-4300. PubMed ID: 27275950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode.
    Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C
    Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.