BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32311213)

  • 21. Tris(ortho-carboranyl)borane: An Isolable, Halogen-Free, Lewis Superacid.
    Akram MO; Tidwell JR; Dutton JL; Martin CD
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212073. PubMed ID: 36135949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H
    Heshmat M; Privalov T
    Chemistry; 2017 Jul; 23(38):9098-9113. PubMed ID: 28475817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective Nazarov Cyclizations Catalyzed by an Axial Chiral C
    Süsse L; Vogler M; Mewald M; Kemper B; Irran E; Oestreich M
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11441-11444. PubMed ID: 29978948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the Reactivity of B-Connected Carboranylphosphines in Frustrated Lewis Pair Chemistry: A New Frame for a Classic System.
    Schulz J; Sárosi MB; Hey-Hawkins E
    Chemistry; 2022 Jun; 28(34):e202200531. PubMed ID: 35472172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. B(C
    Liu ZY; Wen ZH; Wang XC
    Angew Chem Int Ed Engl; 2017 May; 56(21):5817-5820. PubMed ID: 28418184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Silylene-Borane Lewis Pair as a Tool for Trapping a Water Molecule: Silanol Formation and Dehydrogenation.
    Roesch P; Müller R; Dallmann A; Scholz G; Kaupp M; Braun T; Braun-Cula B; Wittwer P
    Chemistry; 2019 Mar; 25(18):4678-4682. PubMed ID: 30724403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lewis-Pairing-Induced Electrochemiluminescence Enhancement from Electron Donor-Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector.
    Ikeda T; Tahara K; Ishimatsu R; Ono T; Cui L; Maeda M; Ozawa Y; Abe M
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202301109. PubMed ID: 36878874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines.
    Gandhamsetty N; Jeong J; Park J; Park S; Chang S
    J Org Chem; 2015 Jul; 80(14):7281-7. PubMed ID: 26152758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the Influence of Donor-Acceptor Diazo Compounds on the Catalyst Efficiency of B(C
    Babaahmadi R; Dasgupta A; Hyland CJT; Yates BF; Melen RL; Ariafard A
    Chemistry; 2022 Feb; 28(11):e202104376. PubMed ID: 34958698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles.
    Kojima M; Kanai M
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12224-7. PubMed ID: 27539196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3-tert-Butyl-Substituted Cyclohexa-1,4-dienes as Isobutane Equivalents in the B(C
    Keess S; Oestreich M
    Chemistry; 2017 May; 23(25):5925-5928. PubMed ID: 27775187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinatively Unsaturated Amidotitanocene Cations with Inverted σ and π Bond Strengths: Controlled Release of Aminyl Radicals and Hydrogenation/Dehydrogenation Catalysis.
    Bonnin Q; Edlová T; Sosa Carrizo ED; Fleurat-Lessard P; Brandès S; Cattey H; Richard P; Le Gendre P; Normand AT
    Chemistry; 2021 Dec; 27(72):18175-18187. PubMed ID: 34669988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density Functional Theory Mechanistic Study of Boron-Catalyzed N-Alkylation of Amines with Formic Acid: Formic Acid Activation by Silylation Reaction.
    Du P; Zhao J
    Chem Asian J; 2018 Mar; 13(6):701-709. PubMed ID: 29377619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Addition of the Lewis Acid Zn(C
    Paterson AF; Tsetseris L; Li R; Basu A; Faber H; Emwas AH; Panidi J; Fei Z; Niazi MR; Anjum DH; Heeney M; Anthopoulos TD
    Adv Mater; 2019 Jul; 31(27):e1900871. PubMed ID: 31074923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1,2-Carbopentafluorophenylation of Alkynes: The Metallomimetic Pull-Push Reactivity of Tris(pentafluorophenyl)borane.
    Shibuya M; Matsuda M; Yamamoto Y
    Chemistry; 2021 Jun; 27(34):8822-8831. PubMed ID: 33860597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Reactivity Relationships in Borane-Based FLP-Catalyzed Hydrogenations, Dehydrogenations, and Cycloisomerizations.
    Paradies J
    Acc Chem Res; 2023 Apr; 56(7):821-834. PubMed ID: 36913645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine-Tuning of Lewis Acidity: The Case of Borenium Hydride Complexes Derived from Bis(phosphinimino)amide Boron Precursors.
    Jaiswal K; Prashanth B; Singh S
    Chemistry; 2016 Jul; 22(31):11035-41. PubMed ID: 27351275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directly Bridging Indoles to 3,3'-Bisindolylmethanes by Using Carboxylic Acids and Hydrosilanes under Mild Conditions.
    Qiao C; Liu XF; Fu HC; Yang HP; Zhang ZB; He LN
    Chem Asian J; 2018 Sep; 13(18):2664-2670. PubMed ID: 29926534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, structure, and reactivity of diazene adducts: isolation of iso-diazene stabilized as a borane adduct.
    Reiß F; Schulz A; Villinger A
    Chemistry; 2014 Sep; 20(37):11800-11. PubMed ID: 25059989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Group 6 Transition-Metal/Boron Frustrated Lewis Pair Templates Activate N
    Simonneau A; Turrel R; Vendier L; Etienne M
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12268-12272. PubMed ID: 28766855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.