BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32311963)

  • 1. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach.
    Uhlig J; Biggemann L; Nietert MM; Beißbarth T; Lotz J; Kim HS; Trojan L; Uhlig A
    Medicine (Baltimore); 2020 Apr; 99(16):e19725. PubMed ID: 32311963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma.
    Nassiri N; Maas M; Cacciamani G; Varghese B; Hwang D; Lei X; Aron M; Desai M; Oberai AA; Cen SY; Gill IS; Duddalwar VA
    Eur Urol Focus; 2022 Jul; 8(4):988-994. PubMed ID: 34538748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.
    Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O
    Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists.
    Sun XY; Feng QX; Xu X; Zhang J; Zhu FP; Yang YH; Zhang YD
    AJR Am J Roentgenol; 2020 Jan; 214(1):W44-W54. PubMed ID: 31553660
    [No Abstract]   [Full Text] [Related]  

  • 5. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses.
    Yap FY; Varghese BA; Cen SY; Hwang DH; Lei X; Desai B; Lau C; Yang LL; Fullenkamp AJ; Hajian S; Rivas M; Gupta MN; Quinn BD; Aron M; Desai MM; Aron M; Oberai AA; Gill IS; Duddalwar VA
    Eur Radiol; 2021 Feb; 31(2):1011-1021. PubMed ID: 32803417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.
    Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS
    Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning.
    Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H
    Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography.
    Uhlig J; Leha A; Delonge LM; Haack AM; Shuch B; Kim HS; Bremmer F; Trojan L; Lotz J; Uhlig A
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT.
    Schieda N; Nguyen K; Thornhill RE; McInnes MDF; Wu M; James N
    Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat.
    Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X
    Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma.
    Yin RH; Yang YC; Tang XQ; Shi HF; Duan SF; Pan CJ
    J Xray Sci Technol; 2021; 29(6):1149-1160. PubMed ID: 34657848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics analysis of ultrasound images to discriminate between benign and malignant adnexal masses with solid ultrasound morphology.
    Moro F; Vagni M; Tran HE; Bernardini F; Mascilini F; Ciccarone F; Nero C; Giannarelli D; Boldrini L; Fagotti A; Scambia G; Valentin L; Testa AC
    Ultrasound Obstet Gynecol; 2024 May; ():. PubMed ID: 38748935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stratification of cystic renal masses into benign and potentially malignant: applying machine learning to the bosniak classification.
    Miskin N; Qin L; Matalon SA; Tirumani SH; Alessandrino F; Silverman SG; Shinagare AB
    Abdom Radiol (NY); 2021 Jan; 46(1):311-318. PubMed ID: 32613401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status.
    Kocak B; Durmaz ES; Ates E; Ulusan MB
    AJR Am J Roentgenol; 2019 Mar; 212(3):W55-W63. PubMed ID: 30601030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma.
    Yang L; Gao L; Arefan D; Tan Y; Dan H; Zhang J
    BMC Med Imaging; 2022 Jan; 22(1):15. PubMed ID: 35094674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F; Schieda N; Krishna S; Ukwatta E
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study.
    Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J
    J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.