These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32311963)

  • 1. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach.
    Uhlig J; Biggemann L; Nietert MM; Beißbarth T; Lotz J; Kim HS; Trojan L; Uhlig A
    Medicine (Baltimore); 2020 Apr; 99(16):e19725. PubMed ID: 32311963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation.
    Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A
    Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting.
    Uhlig A; Uhlig J; Leha A; Biggemann L; Bachanek S; Stöckle M; Reichert M; Lotz J; Zeuschner P; Maßmann A
    Eur Radiol; 2024 Oct; 34(10):6254-6263. PubMed ID: 38634876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning.
    Massa'a RN; Stoeckl EM; Lubner MG; Smith D; Mao L; Shapiro DD; Abel EJ; Wentland AL
    Abdom Radiol (NY); 2022 Aug; 47(8):2896-2904. PubMed ID: 35723716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms.
    Miskin N; Qin L; Silverman SG; Shinagare AB
    J Comput Assist Tomogr; 2023 May-Jun 01; 47(3):376-381. PubMed ID: 37184999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma.
    Nassiri N; Maas M; Cacciamani G; Varghese B; Hwang D; Lei X; Aron M; Desai M; Oberai AA; Cen SY; Gill IS; Duddalwar VA
    Eur Urol Focus; 2022 Jul; 8(4):988-994. PubMed ID: 34538748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.
    Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O
    Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists.
    Sun XY; Feng QX; Xu X; Zhang J; Zhu FP; Yang YH; Zhang YD
    AJR Am J Roentgenol; 2020 Jan; 214(1):W44-W54. PubMed ID: 31553660
    [No Abstract]   [Full Text] [Related]  

  • 9. Cystic renal mass screening: machine-learning-based radiomics on unenhanced computed tomography.
    Huang L; Ye Y; Chen J; Feng W; Peng S; Du X; Li X; Song Z; Liu T
    Diagn Interv Radiol; 2024 Jul; 30(4):236-247. PubMed ID: 38164893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses.
    Yap FY; Varghese BA; Cen SY; Hwang DH; Lei X; Desai B; Lau C; Yang LL; Fullenkamp AJ; Hajian S; Rivas M; Gupta MN; Quinn BD; Aron M; Desai MM; Aron M; Oberai AA; Gill IS; Duddalwar VA
    Eur Radiol; 2021 Feb; 31(2):1011-1021. PubMed ID: 32803417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.
    Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS
    Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning.
    Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H
    Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography.
    Uhlig J; Leha A; Delonge LM; Haack AM; Shuch B; Kim HS; Bremmer F; Trojan L; Lotz J; Uhlig A
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT.
    Schieda N; Nguyen K; Thornhill RE; McInnes MDF; Wu M; James N
    Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat.
    Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X
    Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma.
    Yin RH; Yang YC; Tang XQ; Shi HF; Duan SF; Pan CJ
    J Xray Sci Technol; 2021; 29(6):1149-1160. PubMed ID: 34657848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study.
    Al-Mubarak H; Bane O; Gillingham N; Kyriakakos C; Abboud G; Cuevas J; Gonzalez J; Meilika K; Horowitz A; Huang HV; Daza J; Fauveau V; Badani K; Viswanath SE; Taouli B; Lewis S
    Abdom Radiol (NY); 2024 Oct; 49(10):3464-3475. PubMed ID: 38467854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced and unenhanced: Radiomics models for discriminating between benign and malignant cystic renal masses on CT images: A multi-center study.
    Huang L; Feng W; Lin W; Chen J; Peng S; Du X; Li X; Liu T; Ye Y
    PLoS One; 2023; 18(9):e0292110. PubMed ID: 37768941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.