These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32312051)

  • 1. Advanced Liquid Chromatography of Polyolefins Using Simultaneous Solvent and Temperature Gradients.
    Ndiripo A; Albrecht A; Pasch H
    Anal Chem; 2020 May; 92(10):7325-7333. PubMed ID: 32312051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving temperature gradient interaction chromatography of polyolefins by simultaneous use of different stationary phases.
    Ndiripo A; Ndlovu PZ; Albrecht A; Pasch H
    J Chromatogr A; 2021 Sep; 1653():462416. PubMed ID: 34332317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Composition Fractionation of Olefin Plastomers/Elastomers by Solvent and Thermal Gradient Interaction Chromatography.
    Ndiripo A; Albrecht A; Monrabal B; Wang J; Pasch H
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700703. PubMed ID: 29333694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Analysis of Oxidized Waxes by Solvent and Thermal Gradient Interaction Chromatography and Two-Dimensional Liquid Chromatography.
    Ndiripo A; Pasch H
    Anal Chem; 2018 Jun; 90(12):7626-7634. PubMed ID: 29807432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving chromatographic separation of polyolefins on porous graphitic carbon stationary phases: effects of adsorption promoting solvent and column length.
    Ndiripo A; Albrecht A; Pasch H
    RSC Adv; 2020 May; 10(31):17942-17950. PubMed ID: 35517227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved chemical composition separation of ethylene-propylene random copolymers by high-temperature solvent gradient interaction chromatography.
    Cheruthazhekatt S; Pasch H
    Anal Bioanal Chem; 2013 Oct; 405(26):8607-14. PubMed ID: 23907688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward absolute chemical composition distribution measurement of polyolefins by high-temperature liquid chromatography hyphenated with infrared absorbance and light scattering detectors.
    Lee D; Shan CL; Meunier DM; Lyons JW; Cong R; deGroot AW
    Anal Chem; 2014 Sep; 86(17):8649-56. PubMed ID: 25117509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use graphene coated silica core shell particles to provide rapid, precise, and equivalent chemical composition distribution analysis for polyolefin materials by high temperature thermal gradient interaction chromatography.
    Cong R; Hollis C; Bautista J; Hill T; Bailey K; Joseph K
    J Chromatogr A; 2023 Oct; 1709():464393. PubMed ID: 37748353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of short-chain branched polyolefins by high-temperature gradient adsorption liquid chromatography.
    Macko T; Brüll R; Alamo RG; Stadler FJ; Losio S
    Anal Bioanal Chem; 2011 Feb; 399(4):1547-56. PubMed ID: 21046082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.
    Chatterjee T; Rickard MA; Pearce E; Pangburn TO; Li Y; Lyons JW; Cong R; deGroot AW; Meunier DM
    J Chromatogr A; 2016 Sep; 1465():107-16. PubMed ID: 27590085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of polypropylene stereoisomers in solvent gradient interaction chromatography on porous graphitic carbon as influenced by temperature and mobile phase composition.
    Ndiripo A; Pasch H
    J Chromatogr A; 2020 May; 1618():460865. PubMed ID: 31948725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive high temperature two-dimensional liquid chromatography combined with high temperature gradient chromatography-infrared spectroscopy for the analysis of impact polypropylene copolymers.
    Cheruthazhekatt S; Harding GW; Pasch H
    J Chromatogr A; 2013 Apr; 1286():69-82. PubMed ID: 23489491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the multimodality of preparative TREF fractionation as detected by advanced analytical methods.
    Ndiripo A; Pasch H
    Anal Bioanal Chem; 2015 Aug; 407(21):6493-503. PubMed ID: 26055883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the comonomer distribution in ethylene - vinyl ester terpolymers through liquid chromatography with infrared detection.
    Arndt JH; Bhati SS; Ellwanger Cangussu M; Geertz G; Mohammadi H; Brüll R
    J Chromatogr A; 2023 Aug; 1705():464197. PubMed ID: 37423074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparative solution crystallization fractionation: a simple and rapid fractionation method for the chemical composition separation of complex ethylene-propylene copolymers.
    Cheruthazhekatt S; Pasch H
    Anal Bioanal Chem; 2014 May; 406(12):2999-3007. PubMed ID: 24633510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.
    Liu Y; Phiri MJ; Ndiripo A; Pasch H
    J Chromatogr A; 2017 Nov; 1522():23-29. PubMed ID: 28964506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multidimensional fractionation protocol for the oligomer analysis of oxidized waxes.
    Ndiripo A; Pasch H
    Anal Chim Acta; 2018 Oct; 1027():137-148. PubMed ID: 29866263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance liquid chromatography of polyolefin plastomers/elastomers (ethylene/1-octene copolymers) - Comparison of different solvent systems.
    Arndt JH; Brüll R; Macko T; Garg P; Tacx JCJF
    J Chromatogr A; 2019 May; 1593():73-80. PubMed ID: 30718060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-depth characterization of polyolefin plastomers/elastomers (ethylene/1-octene copolymers) through hyphenated chromatographic techniques.
    Arndt JH; Brüll R; Macko T; Garg P; Tacx JCJF
    J Chromatogr A; 2020 Jun; 1621():461081. PubMed ID: 32349863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical parameters of liquid chromatography at critical conditions in context of poloxamers: Pore diameter, mobile phase composition, temperature and gradients.
    Malik MI
    J Chromatogr A; 2020 Jan; 1609():460440. PubMed ID: 31416625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.