These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32312276)

  • 1. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy.
    Chartrand G; Emiliani RD; Pawlowski SA; Markel DA; Bahig H; Cengarle-Samak A; Rajakesari S; Lavoie J; Ducharme S; Roberge D
    J Magn Reson Imaging; 2022 Dec; 56(6):1885-1898. PubMed ID: 35624544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study.
    Buchner JA; Kofler F; Etzel L; Mayinger M; Christ SM; Brunner TB; Wittig A; Menze B; Zimmer C; Meyer B; Guckenberger M; Andratschke N; El Shafie RA; Debus J; Rogers S; Riesterer O; Schulze K; Feldmann HJ; Blanck O; Zamboglou C; Ferentinos K; Wolff R; Eitz KA; Combs SE; Bernhardt D; Wiestler B; Peeken JC
    Radiother Oncol; 2023 Jan; 178():109425. PubMed ID: 36442609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised U-Net.
    Lin M; Momin S; Lei Y; Wang H; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Aug; 48(8):4365-4374. PubMed ID: 34101845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001.
    Liang Y; Lee K; Bovi JA; Palmer JD; Brown PD; Gondi V; Tomé WA; Benzinger TLS; Mehta MP; Li XA
    Int J Radiat Oncol Biol Phys; 2022 Nov; 114(3):529-536. PubMed ID: 35787927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study.
    Wang G; Yang B; Qu X; Guo J; Luo Y; Xu X; Wu F; Fan X; Hou Y; Tian S; Huang S; Xian J
    Neuroradiology; 2024 Oct; 66(10):1781-1791. PubMed ID: 39014270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.
    Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G
    Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
    Qu J; Zhang W; Shu X; Wang Y; Wang L; Xu M; Yao L; Hu N; Tang B; Zhang L; Lui S
    Eur Radiol; 2023 Oct; 33(10):6648-6658. PubMed ID: 37186214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.
    Charron O; Lallement A; Jarnet D; Noblet V; Clavier JB; Meyer P
    Comput Biol Med; 2018 Apr; 95():43-54. PubMed ID: 29455079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Aug; 34(8):5056-5065. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-Incorporated Deep Ensemble Learning for Improving Brain Metastasis Stereotactic Radiosurgery Outcome Prediction.
    Zhao J; Vaios E; Wang Y; Yang Z; Cui Y; Reitman ZJ; Lafata KJ; Fecci P; Kirkpatrick J; Fang Yin F; Floyd S; Wang C
    Int J Radiat Oncol Biol Phys; 2024 Oct; 120(2):603-613. PubMed ID: 38615888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture.
    Cao Y; Vassantachart A; Ye JC; Yu C; Ruan D; Sheng K; Lao Y; Shen ZL; Balik S; Bian S; Zada G; Shiu A; Chang EL; Yang W
    Phys Med Biol; 2021 Jan; 66(1):015003. PubMed ID: 33186927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.
    Liu Y; Stojadinovic S; Hrycushko B; Wardak Z; Lau S; Lu W; Yan Y; Jiang SB; Zhen X; Timmerman R; Nedzi L; Gu X
    PLoS One; 2017; 12(10):e0185844. PubMed ID: 28985229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.