These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32312418)

  • 1. Latest trends in structure based drug design with protein targets.
    Bagchi A
    Adv Protein Chem Struct Biol; 2020; 121():1-23. PubMed ID: 32312418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein structure-based drug design: from docking to molecular dynamics.
    Śledź P; Caflisch A
    Curr Opin Struct Biol; 2018 Feb; 48():93-102. PubMed ID: 29149726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.
    Vora J; Patel S; Sinha S; Sharma S; Srivastava A; Chhabria M; Shrivastava N
    J Biomol Struct Dyn; 2019 Jan; 37(1):131-146. PubMed ID: 29268664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site detection and druggability prediction of protein targets for structure-based drug design.
    Yuan Y; Pei J; Lai L
    Curr Pharm Des; 2013; 19(12):2326-33. PubMed ID: 23082974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
    Aldeghi M; Bluck JP; Biggin PC
    Methods Mol Biol; 2018; 1762():199-232. PubMed ID: 29594774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR in structure-based drug design.
    Carneiro MG; Ab E; Theisgen S; Siegal G
    Essays Biochem; 2017 Nov; 61(5):485-493. PubMed ID: 29118095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of novel lead molecules against RhoG protein as cancer target - a computational study.
    Dasari T; Kondagari B; Dulapalli R; Abdelmonsef AH; Mukkera T; Padmarao LS; Malkhed V; Vuruputuri U
    J Biomol Struct Dyn; 2017 Nov; 35(14):3119-3139. PubMed ID: 27691842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Docking Programs Work.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():35-50. PubMed ID: 31452097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships.
    Naqvi AAT; Mohammad T; Hasan GM; Hassan MI
    Curr Top Med Chem; 2018; 18(20):1755-1768. PubMed ID: 30360721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation.
    Sohraby F; Bagheri M; Aryapour H
    Methods Mol Biol; 2019; 1903():23-43. PubMed ID: 30547434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Binding Mode and Prospective Structural Features of Novel Nef Protein Inhibitors as Potential Anti-HIV Drugs.
    Moonsamy S; Bhakat S; Ramesh M; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):49-64. PubMed ID: 27981421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates.
    Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D
    Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes.
    Mortier J; Rakers C; Bermudez M; Murgueitio MS; Riniker S; Wolber G
    Drug Discov Today; 2015 Jun; 20(6):686-702. PubMed ID: 25615716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analyses of interactions between ALK-5 and bioactive ligands: insights for the design of potential anticancer agents.
    Almeida MO; Costa CHS; Gomes GC; Lameira J; Alves CN; Honorio KM
    J Biomol Struct Dyn; 2018 Nov; 36(15):4010-4022. PubMed ID: 29132261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).
    Pagadala NS; Perez-Pineiro R; Wishart DS; Tuszynski JA
    Eur J Med Chem; 2015 Feb; 91():118-31. PubMed ID: 25042003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.