These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32312593)

  • 1. Expanding the Reach of Recombineering to Environmental Bacteria.
    Borrero-de Acuña JM; Poblete-Castro I
    Trends Biotechnol; 2020 Jul; 38(7):684-685. PubMed ID: 32312593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida.
    Aparicio T; de Lorenzo V; Martínez-García E
    Biotechnol J; 2018 May; 13(5):e1700161. PubMed ID: 29058367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding
    Asin-Garcia E; Martin-Pascual M; Garcia-Morales L; van Kranenburg R; Martins Dos Santos VAP
    ACS Synth Biol; 2021 Oct; 10(10):2672-2688. PubMed ID: 34547891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.
    Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S
    Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440.
    Liu S; Narancic T; Davis C; O'Connor KE
    Methods Mol Biol; 2022; 2397():341-358. PubMed ID: 34813072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant
    McConville TH; Giddins MJ; Uhlemann AC
    STAR Protoc; 2021 Mar; 2(1):100373. PubMed ID: 33733242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida.
    Aparicio T; de Lorenzo V; Martínez-García E
    Microb Biotechnol; 2019 Sep; 12(5):1076-1089. PubMed ID: 31237429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 10. Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods.
    Leenay RT; Vento JM; Shah M; Martino ME; Leulier F; Beisel CL
    Biotechnol J; 2019 Mar; 14(3):e1700583. PubMed ID: 30156038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas.
    Patinios C; Creutzburg SCA; Arifah AQ; Adiego-Pérez B; Gyimah EA; Ingham CJ; Kengen SWM; van der Oost J; Staals RHJ
    Nucleic Acids Res; 2021 Nov; 49(19):11392-11404. PubMed ID: 34614191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42.
    Aparicio T; Jensen SI; Nielsen AT; de Lorenzo V; Martínez-García E
    Biotechnol J; 2016 Oct; 11(10):1309-1319. PubMed ID: 27367544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomics harvested genus-specific single-stranded DNA-annealing proteins improve and expand recombineering in Pseudomonas species.
    Asin-Garcia E; Garcia-Morales L; Bartholet T; Liang Z; Isaacs FJ; Martins Dos Santos VAP
    Nucleic Acids Res; 2023 Dec; 51(22):12522-12536. PubMed ID: 37941137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion.
    Zhou Y; Lin L; Wang H; Zhang Z; Zhou J; Jiao N
    Commun Biol; 2020 Mar; 3(1):98. PubMed ID: 32139868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retron Library Recombineering: Next Powerful Tool for Genome Editing after CRISPR/Cas.
    Kaur N; Pati PK
    ACS Synth Biol; 2024 Apr; 13(4):1019-1025. PubMed ID: 38480006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.