BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32312610)

  • 1. 3D-Printed Synthetic Vocal Fold Models.
    Romero RGT; Colton MB; Thomson SL
    J Voice; 2021 Sep; 35(5):685-694. PubMed ID: 32312610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded 3D printing of multi-layer, self-oscillating vocal fold models.
    Greenwood TE; Thomson SL
    J Biomech; 2021 May; 121():110388. PubMed ID: 33873116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printing of Ultrasoft Silicone with a Functional Stiffness Gradient.
    Young CA; O'Bannon M; Thomson SL
    3D Print Addit Manuf; 2024 Apr; 11(2):435-445. PubMed ID: 38689918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibratory responses of synthetic, self-oscillating vocal fold models.
    Murray PR; Thomson SL
    J Acoust Soc Am; 2012 Nov; 132(5):3428-38. PubMed ID: 23145623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Mehta DD; Hillman RE; Zeitels SM
    Laryngoscope; 2020 Aug; 130(8):1980-1988. PubMed ID: 31603575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically conductive synthetic vocal fold replicas for voice production research.
    Syndergaard KL; Dushku S; Thomson SL
    J Acoust Soc Am; 2017 Jul; 142(1):EL63. PubMed ID: 28764459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histologic Examination of Vocal Fold Mucosal Wave and Vibration.
    Chung HR; Reddy NK; Manzoor D; Schlegel P; Zhang Z; Chhetri DK
    Laryngoscope; 2024 Jan; 134(1):264-271. PubMed ID: 37522475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating blunt force trauma to the larynx: The role of inferior-superior vocal fold displacement on phonation.
    Stewart ME; Erath BD
    J Biomech; 2021 May; 121():110377. PubMed ID: 33819698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A canonical biomechanical vocal fold model.
    Bhattacharya P; Siegmund TH
    J Voice; 2012 Sep; 26(5):535-47. PubMed ID: 22209063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P; Siegmund T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of Vocal Fold Medial Surface 3D Trajectories: Effects of Neuromuscular Stimulation and Airflow.
    Schlegel P; Chung HR; Döllinger M; Chhetri DK
    Laryngoscope; 2024 Mar; 134(3):1249-1257. PubMed ID: 37672673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of systemic hydration in vocal fold collision.
    Bhattacharya P; Siegmund T
    Comput Methods Biomech Biomed Engin; 2014; 17(16):1835-52. PubMed ID: 23531170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibratory Onset of Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia: A High-Speed Video Study✰.
    Chen W; Woo P; Murry T
    J Voice; 2020 Jul; 34(4):598-603. PubMed ID: 30595236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of Phonation Onset Pressure to Vocal Fold Stiffness Distribution.
    Deng JJ; Peterson SD
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38345603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.