These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 32312845)
1. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Pino LK; Just SC; MacCoss MJ; Searle BC Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845 [TBL] [Abstract][Full Text] [Related]
2. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
3. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311 [TBL] [Abstract][Full Text] [Related]
4. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Searle BC; Pino LK; Egertson JD; Ting YS; Lawrence RT; MacLean BX; Villén J; MacCoss MJ Nat Commun; 2018 Dec; 9(1):5128. PubMed ID: 30510204 [TBL] [Abstract][Full Text] [Related]
5. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359 [TBL] [Abstract][Full Text] [Related]
6. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Searle BC; Swearingen KE; Barnes CA; Schmidt T; Gessulat S; Küster B; Wilhelm M Nat Commun; 2020 Mar; 11(1):1548. PubMed ID: 32214105 [TBL] [Abstract][Full Text] [Related]
7. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
8. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells. Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320 [TBL] [Abstract][Full Text] [Related]
9. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry. Ku X; Yan W Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
12. Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications. Sidoli S; Simithy J; Karch KR; Kulej K; Garcia BA Anal Chem; 2015 Nov; 87(22):11448-54. PubMed ID: 26505526 [TBL] [Abstract][Full Text] [Related]
13. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234 [TBL] [Abstract][Full Text] [Related]
14. New targeted approaches for the quantification of data-independent acquisition mass spectrometry. Bruderer R; Sondermann J; Tsou CC; Barrantes-Freer A; Stadelmann C; Nesvizhskii AI; Schmidt M; Reiter L; Gomez-Varela D Proteomics; 2017 May; 17(9):. PubMed ID: 28319648 [TBL] [Abstract][Full Text] [Related]
15. nf-encyclopedia: A Cloud-Ready Pipeline for Chromatogram Library Data-Independent Acquisition Proteomics Workflows. Allen C; Meinl R; Paez JS; Searle BC; Just S; Pino LK; Fondrie WE J Proteome Res; 2023 Aug; 22(8):2743-2749. PubMed ID: 37417926 [TBL] [Abstract][Full Text] [Related]
16. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis. Prakash A; Peterman S; Ahmad S; Sarracino D; Frewen B; Vogelsang M; Byram G; Krastins B; Vadali G; Lopez M J Proteome Res; 2014 Dec; 13(12):5415-30. PubMed ID: 25244318 [TBL] [Abstract][Full Text] [Related]
17. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation. Lou R; Liu W; Li R; Li S; He X; Shui W Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227 [TBL] [Abstract][Full Text] [Related]
19. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. Frankenfield AM; Ni J; Ahmed M; Hao L J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413 [TBL] [Abstract][Full Text] [Related]