These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32312966)

  • 1. Mouse tracking reveals structure knowledge in the absence of model-based choice.
    Konovalov A; Krajbich I
    Nat Commun; 2020 Apr; 11(1):1893. PubMed ID: 32312966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy-based metrics for predicting choice behavior based on local response to reward.
    Trepka E; Spitmaan M; Bari BA; Costa VD; Cohen JY; Soltani A
    Nat Commun; 2021 Nov; 12(1):6567. PubMed ID: 34772943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching costs in stochastic environments drive the emergence of matching behaviour in animal decision-making through the promotion of reward learning strategies.
    Lyu N; Hu Y; Zhang J; Lloyd H; Sun YH; Tao Y
    Sci Rep; 2021 Dec; 11(1):23593. PubMed ID: 34880339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure learning in human sequential decision-making.
    Acuña DE; Schrater P
    PLoS Comput Biol; 2010 Dec; 6(12):e1001003. PubMed ID: 21151963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ubiquity of model-based reinforcement learning.
    Doll BB; Simon DA; Daw ND
    Curr Opin Neurobiol; 2012 Dec; 22(6):1075-81. PubMed ID: 22959354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
    Mendonça AG; Drugowitsch J; Vicente MI; DeWitt EEJ; Pouget A; Mainen ZF
    Nat Commun; 2020 Jun; 11(1):2757. PubMed ID: 32488065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making.
    Xu HA; Modirshanechi A; Lehmann MP; Gerstner W; Herzog MH
    PLoS Comput Biol; 2021 Jun; 17(6):e1009070. PubMed ID: 34081705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward foraging task and model-based analysis reveal how fruit flies learn value of available options.
    Seidenbecher SE; Sanders JI; von Philipsborn AC; Kvitsiani D
    PLoS One; 2020; 15(10):e0239616. PubMed ID: 33007023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.
    Cos I; Khamassi M; Girard B
    J Physiol Paris; 2013 Nov; 107(5):399-408. PubMed ID: 23973913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of strategy use in the Iowa gambling task: a comparison of win-stay/lose-shift and reinforcement learning models.
    Worthy DA; Hawthorne MJ; Otto AR
    Psychon Bull Rev; 2013 Apr; 20(2):364-71. PubMed ID: 23065763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major Depression Impairs the Use of Reward Values for Decision-Making.
    Rupprechter S; Stankevicius A; Huys QJM; Steele JD; Seriès P
    Sci Rep; 2018 Sep; 8(1):13798. PubMed ID: 30218084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational noise in reward-guided learning drives behavioral variability in volatile environments.
    Findling C; Skvortsova V; Dromnelle R; Palminteri S; Wyart V
    Nat Neurosci; 2019 Dec; 22(12):2066-2077. PubMed ID: 31659343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Reinforcement?) Learning to forage optimally.
    Kolling N; Akam T
    Curr Opin Neurobiol; 2017 Oct; 46():162-169. PubMed ID: 28918312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning.
    Konovalov A; Krajbich I
    Nat Commun; 2016 Aug; 7():12438. PubMed ID: 27511383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.