BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32312966)

  • 1. Mouse tracking reveals structure knowledge in the absence of model-based choice.
    Konovalov A; Krajbich I
    Nat Commun; 2020 Apr; 11(1):1893. PubMed ID: 32312966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropy-based metrics for predicting choice behavior based on local response to reward.
    Trepka E; Spitmaan M; Bari BA; Costa VD; Cohen JY; Soltani A
    Nat Commun; 2021 Nov; 12(1):6567. PubMed ID: 34772943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching costs in stochastic environments drive the emergence of matching behaviour in animal decision-making through the promotion of reward learning strategies.
    Lyu N; Hu Y; Zhang J; Lloyd H; Sun YH; Tao Y
    Sci Rep; 2021 Dec; 11(1):23593. PubMed ID: 34880339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making.
    Xu HA; Modirshanechi A; Lehmann MP; Gerstner W; Herzog MH
    PLoS Comput Biol; 2021 Jun; 17(6):e1009070. PubMed ID: 34081705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure learning in human sequential decision-making.
    Acuña DE; Schrater P
    PLoS Comput Biol; 2010 Dec; 6(12):e1001003. PubMed ID: 21151963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ubiquity of model-based reinforcement learning.
    Doll BB; Simon DA; Daw ND
    Curr Opin Neurobiol; 2012 Dec; 22(6):1075-81. PubMed ID: 22959354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
    Mendonça AG; Drugowitsch J; Vicente MI; DeWitt EEJ; Pouget A; Mainen ZF
    Nat Commun; 2020 Jun; 11(1):2757. PubMed ID: 32488065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward foraging task and model-based analysis reveal how fruit flies learn value of available options.
    Seidenbecher SE; Sanders JI; von Philipsborn AC; Kvitsiani D
    PLoS One; 2020; 15(10):e0239616. PubMed ID: 33007023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.
    Cos I; Khamassi M; Girard B
    J Physiol Paris; 2013 Nov; 107(5):399-408. PubMed ID: 23973913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of strategy use in the Iowa gambling task: a comparison of win-stay/lose-shift and reinforcement learning models.
    Worthy DA; Hawthorne MJ; Otto AR
    Psychon Bull Rev; 2013 Apr; 20(2):364-71. PubMed ID: 23065763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major Depression Impairs the Use of Reward Values for Decision-Making.
    Rupprechter S; Stankevicius A; Huys QJM; Steele JD; Seriès P
    Sci Rep; 2018 Sep; 8(1):13798. PubMed ID: 30218084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational noise in reward-guided learning drives behavioral variability in volatile environments.
    Findling C; Skvortsova V; Dromnelle R; Palminteri S; Wyart V
    Nat Neurosci; 2019 Dec; 22(12):2066-2077. PubMed ID: 31659343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Reinforcement?) Learning to forage optimally.
    Kolling N; Akam T
    Curr Opin Neurobiol; 2017 Oct; 46():162-169. PubMed ID: 28918312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning.
    Konovalov A; Krajbich I
    Nat Commun; 2016 Aug; 7():12438. PubMed ID: 27511383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.