These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32312991)

  • 1. Large scale active-learning-guided exploration for in vitro protein production optimization.
    Borkowski O; Koch M; Zettor A; Pandi A; Batista AC; Soudier P; Faulon JL
    Nat Commun; 2020 Apr; 11(1):1872. PubMed ID: 32312991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Optimization Cycle of a Cell-Free Ribosome Assembly and Protein Synthesis System.
    Caschera F; Karim AS; Gazzola G; d'Aquino AE; Packard NH; Jewett MC
    ACS Synth Biol; 2018 Dec; 7(12):2841-2853. PubMed ID: 30354075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purified cell-free systems as standard parts for synthetic biology.
    Matsubayashi H; Ueda T
    Curr Opin Chem Biol; 2014 Oct; 22():158-62. PubMed ID: 25438802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Free Synthetic Biology: Engineering Beyond the Cell.
    Perez JG; Stark JC; Jewett MC
    Cold Spring Harb Perspect Biol; 2016 Dec; 8(12):. PubMed ID: 27742731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unlocking Applications of Cell-Free Biotechnology through Enhanced Shelf Life and Productivity of
    Gregorio NE; Kao WY; Williams LC; Hight CM; Patel P; Watts KR; Oza JP
    ACS Synth Biol; 2020 Apr; 9(4):766-778. PubMed ID: 32083847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected instabilities explain batch-to-batch variability in cell-free protein expression systems.
    Hunter DJB; Bhumkar A; Giles N; Sierecki E; Gambin Y
    Biotechnol Bioeng; 2018 Aug; 115(8):1904-1914. PubMed ID: 29603735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cell-free expression technology to
    Caschera F
    Synth Syst Biotechnol; 2017 Jun; 2(2):97-104. PubMed ID: 29062966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Cloud-Based Free-Energy Calculations, Synthetically Aware Enumerations, and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization.
    Ghanakota P; Bos PH; Konze KD; Staker J; Marques G; Marshall K; Leswing K; Abel R; Bhat S
    J Chem Inf Model; 2020 Sep; 60(9):4311-4325. PubMed ID: 32484669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cell-free translation system: Development in biochemistry and advance in synthetic biology].
    Kanamori T; Nagaike T; Kuruma Y; Amikura K; Ueda T
    Seikagaku; 2017 Apr; 89(2):211-20. PubMed ID: 29625004
    [No Abstract]   [Full Text] [Related]  

  • 10. Coping with complexity: machine learning optimization of cell-free protein synthesis.
    Caschera F; Bedau MA; Buchanan A; Cawse J; de Lucrezia D; Gazzola G; Hanczyc MM; Packard NH
    Biotechnol Bioeng; 2011 Sep; 108(9):2218-28. PubMed ID: 21520017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology.
    Sun ZZ; Hayes CA; Shin J; Caschera F; Murray RM; Noireaux V
    J Vis Exp; 2013 Sep; (79):e50762. PubMed ID: 24084388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell.
    Caschera F; Noireaux V
    Artif Life; 2016; 22(2):185-95. PubMed ID: 26934095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology.
    Garamella J; Marshall R; Rustad M; Noireaux V
    ACS Synth Biol; 2016 Apr; 5(4):344-55. PubMed ID: 26818434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a Cell-Free Vibrio natriegens Expression System.
    Wiegand DJ; Lee HH; Ostrov N; Church GM
    ACS Synth Biol; 2018 Oct; 7(10):2475-2479. PubMed ID: 30160938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
    Zhou Y; Li G; Dong J; Xing XH; Dai J; Zhang C
    Metab Eng; 2018 May; 47():294-302. PubMed ID: 29627507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein functions through a bacterial cell-free protein expression system.
    Kigawa T
    Methods Mol Biol; 2010; 607():53-62. PubMed ID: 20204848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.
    Jia H; Heymann M; Bernhard F; Schwille P; Kai L
    N Biotechnol; 2017 Oct; 39(Pt B):199-205. PubMed ID: 28690157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase.
    Li J; Lawton TJ; Kostecki JS; Nisthal A; Fang J; Mayo SL; Rosenzweig AC; Jewett MC
    Biotechnol J; 2016 Feb; 11(2):212-8. PubMed ID: 26356243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions.
    Nieß A; Failmezger J; Kuschel M; Siemann-Herzberg M; Takors R
    ACS Synth Biol; 2017 Oct; 6(10):1913-1921. PubMed ID: 28627886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.