BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32313024)

  • 1. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.
    Zhao ZY; Huang WZ; Zhan XK; Pan J; Huang YA; Zhang SW; Yu CQ
    Biomed Res Int; 2021; 2021():9933873. PubMed ID: 33987446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence.
    Li Y; Huang YA; You ZH; Li LP; Wang Z
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31430892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.
    Xiao X; Min JL; Lin WZ; Liu Z; Cheng X; Chou KC
    J Biomol Struct Dyn; 2015; 33(10):2221-33. PubMed ID: 25513722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Discovery of New Drug-Target Interactions for Breast Cancer Treatment.
    Song J; Xu Z; Cao L; Wang M; Hou Y; Li K
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting drug-target interactions using probabilistic matrix factorization.
    Cobanoglu MC; Liu C; Hu F; Oltvai ZN; Bahar I
    J Chem Inf Model; 2013 Dec; 53(12):3399-409. PubMed ID: 24289468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of drug-target interactions based on ensemble learning with fuzzy local ternary pattern.
    Zhao ZY; Huang WZ; Zhan XK; Huang YA; Zhang SW; Yu CQ
    Front Biosci (Landmark Ed); 2021 Jul; 26(7):222-234. PubMed ID: 34340269
    [No Abstract]   [Full Text] [Related]  

  • 11. Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information.
    Zhan X; You Z; Yu C; Li L; Pan J
    Biomed Res Int; 2020; 2020():4516250. PubMed ID: 32908888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier.
    Wang L; You ZH; Xia SX; Liu F; Chen X; Yan X; Zhou Y
    J Theor Biol; 2017 Apr; 418():105-110. PubMed ID: 28088356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.
    Meng FR; You ZH; Chen X; Zhou Y; An JY
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28678206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RoFDT: Identification of Drug-Target Interactions from Protein Sequence and Drug Molecular Structure Using Rotation Forest.
    Wang Y; Wang L; Wong L; Zhao B; Su X; Li Y; You Z
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.