BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32313193)

  • 1. Morphing electronics enable neuromodulation in growing tissue.
    Liu Y; Li J; Song S; Kang J; Tsao Y; Chen S; Mottini V; McConnell K; Xu W; Zheng YQ; Tok JB; George PM; Bao Z
    Nat Biotechnol; 2020 Sep; 38(9):1031-1036. PubMed ID: 32313193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces.
    Song KI; Seo H; Seong D; Kim S; Yu KJ; Kim YC; Kim J; Kwon SJ; Han HS; Youn I; Lee H; Son D
    Nat Commun; 2020 Aug; 11(1):4195. PubMed ID: 32826916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation.
    Dong R; Wang L; Li Z; Jiao J; Wu Y; Feng Z; Wang X; Chen M; Cui C; Lu Y; Jiang X
    ACS Nano; 2024 Jan; 18(2):1702-1713. PubMed ID: 38165231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge.
    Fidanovski K; Mawad D
    Adv Healthc Mater; 2019 May; 8(10):e1900053. PubMed ID: 30941922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugated Polymer for Implantable Electronics toward Clinical Application.
    Liu Y; Feig VR; Bao Z
    Adv Healthc Mater; 2021 Sep; 10(17):e2001916. PubMed ID: 33899347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft strain-insensitive bioelectronics featuring brittle materials.
    Zhao Y; Wang B; Tan J; Yin H; Huang R; Zhu J; Lin S; Zhou Y; Jelinek D; Sun Z; Youssef K; Voisin L; Horrillo A; Zhang K; Wu BM; Coller HA; Lu DC; Pei Q; Emaminejad S
    Science; 2022 Dec; 378(6625):1222-1227. PubMed ID: 36520906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic bioelectronics: a new era for organic electronics.
    Malliaras GG
    Biochim Biophys Acta; 2013 Sep; 1830(9):4286-7. PubMed ID: 23079584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.
    Wurth S; Capogrosso M; Raspopovic S; Gandar J; Federici G; Kinany N; Cutrone A; Piersigilli A; Pavlova N; Guiet R; Taverni G; Rigosa J; Shkorbatova P; Navarro X; Barraud Q; Courtine G; Micera S
    Biomaterials; 2017 Apr; 122():114-129. PubMed ID: 28110171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review.
    Das R; Moradi F; Heidari H
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):343-358. PubMed ID: 31944987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator.
    Bredeson S; Kanneganti A; Deku F; Cogan S; Romero-Ortega M; Troyk P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1017-20. PubMed ID: 26736437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral and cellular consequences of high-electrode count Utah Arrays chronically implanted in rat sciatic nerve.
    Wark HA; Mathews KS; Normann RA; Fernandez E
    J Neural Eng; 2014 Aug; 11(4):046027. PubMed ID: 25031219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.
    Song K; Kim J; Cho S; Kim N; Jung D; Choo H; Lee J
    Adv Healthc Mater; 2018 Aug; 7(15):e1800419. PubMed ID: 29938924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term neuroelectric signal recording from severed nerves.
    De Luca CJ; Gilmore LD; Bloom LJ; Thomson SJ; Cudworth AL; Glimcher MJ
    IEEE Trans Biomed Eng; 1982 Jun; 29(6):393-403. PubMed ID: 7106789
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.