BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32313296)

  • 1. Identification of potential binders of the main protease 3CL
    Macchiagodena M; Pagliai M; Procacci P
    Chem Phys Lett; 2020 Jul; 750():137489. PubMed ID: 32313296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation.
    Keretsu S; Bhujbal SP; Cho SJ
    Sci Rep; 2020 Oct; 10(1):17716. PubMed ID: 33077821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation.
    Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A
    PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CL
    Jukič M; Janežič D; Bren U
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33316996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Docking Studies on the Anti-viral Effects of Compounds From Kabasura Kudineer on SARS-CoV-2 3CL
    Vincent S; Arokiyaraj S; Saravanan M; Dhanraj M
    Front Mol Biosci; 2020; 7():613401. PubMed ID: 33425994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural similarities between SARS-CoV2 3CL
    Bafna K; Cioffi CL; Krug RM; Montelione GT
    Front Chem; 2022; 10():948553. PubMed ID: 36353143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of the bat HKU4 coronavirus 3CL
    Abuhammad A; Al-Aqtash RA; Anson BJ; Mesecar AD; Taha MO
    J Mol Recognit; 2017 Nov; 30(11):. PubMed ID: 28608547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.
    Berry M; Fielding B; Gamieldien J
    BMC Struct Biol; 2015 Apr; 15():8. PubMed ID: 25928480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of SARS-CoV-2 3CL
    Tahir Ul Qamar M; Alqahtani SM; Alamri MA; Chen LL
    J Pharm Anal; 2020 Aug; 10(4):313-319. PubMed ID: 32296570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening.
    Zhu W; Xu M; Chen CZ; Guo H; Shen M; Hu X; Shinn P; Klumpp-Thomas C; Michael SG; Zheng W
    ACS Pharmacol Transl Sci; 2020 Oct; 3(5):1008-1016. PubMed ID: 33062953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses.
    Theerawatanasirikul S; Kuo CJ; Phecharat N; Chootip J; Lekcharoensuk C; Lekcharoensuk P
    Antiviral Res; 2020 Oct; 182():104927. PubMed ID: 32910955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-based Machine Learning Models for the Potential Novel COVID-19 Protease Inhibitors Assisted by Molecular Dynamics Simulation.
    Nayarisseri A; Khandelwal R; Madhavi M; Selvaraj C; Panwar U; Sharma K; Hussain T; Singh SK
    Curr Top Med Chem; 2020; 20(24):2146-2167. PubMed ID: 32621718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms.
    Nutho B; Mahalapbutr P; Hengphasatporn K; Pattaranggoon NC; Simanon N; Shigeta Y; Hannongbua S; Rungrotmongkol T
    Biochemistry; 2020 May; 59(18):1769-1779. PubMed ID: 32293875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Insights into the Anti-SARS-CoV-2 Activity of Chloroquine and Its Analogs and In Silico Screening of Main Protease Inhibitors.
    Achutha AS; Pushpa VL; Suchitra S
    J Proteome Res; 2020 Nov; 19(11):4706-4717. PubMed ID: 32960061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of anti-SARS coronavirus drug based on molecular docking and database screening.
    Chen HF; Yao JH; Sun J; Li Q; Li F; Fan BT; Yuan SG
    Chin J Chem; 2004 Aug; 22(8):882-887. PubMed ID: 32313408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein Binding in SARS-CoV-2 Papain-Like Protease.
    Bosken YK; Cholko T; Lou YC; Wu KP; Chang CA
    Front Mol Biosci; 2020; 7():174. PubMed ID: 32850963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL
    Chitranshi N; Gupta VK; Rajput R; Godinez A; Pushpitha K; Shen T; Mirzaei M; You Y; Basavarajappa D; Gupta V; Graham SL
    J Transl Med; 2020 Jul; 18(1):278. PubMed ID: 32646487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.