These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32313321)

  • 21. Light-fueled transient supramolecular assemblies in water as fluorescence modulators.
    Chen XM; Hou XF; Bisoyi HK; Feng WJ; Cao Q; Huang S; Yang H; Chen D; Li Q
    Nat Commun; 2021 Aug; 12(1):4993. PubMed ID: 34404798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.
    Chen JL; Maiti S; Fortunati I; Ferrante C; Prins LJ
    Chemistry; 2017 Aug; 23(48):11549-11559. PubMed ID: 28544114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
    van Ravensteijn BGP; Hendriksen WE; Eelkema R; van Esch JH; Kegel WK
    J Am Chem Soc; 2017 Jul; 139(29):9763-9766. PubMed ID: 28671466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Hydrolyzable Supra-amphiphile as a Marangoni Self-Propulsion Fuel for Efficient Macroscopic Supramolecular Self-Assembly.
    Lu G; Zhu G; Zhang Q; Tian P; Cheng M; Shi F
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300448. PubMed ID: 36786533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sound-driven dissipative self-assembly of aromatic biomolecules into functional nanoparticles.
    Bhangu SK; Bocchinfuso G; Ashokkumar M; Cavalieri F
    Nanoscale Horiz; 2020 Mar; 5(3):553-563. PubMed ID: 32118232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-activated photodeformable supramolecular dissipative self-assemblies.
    Chen XM; Feng WJ; Bisoyi HK; Zhang S; Chen X; Yang H; Li Q
    Nat Commun; 2022 Jun; 13(1):3216. PubMed ID: 35680948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic surface chemistry and interparticle interactions mediating chemically fueled dissipative assembly of colloids.
    Dissanayake TU; Hughes J; Woehl TJ
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):972-982. PubMed ID: 37453321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components.
    Ghosh A; Paul I; Schmittel M
    J Am Chem Soc; 2021 Apr; 143(14):5319-5323. PubMed ID: 33787253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide-Selective Templated Self-Assembly of Nanoreactors under Dissipative Conditions.
    Chandrabhas S; Maiti S; Fortunati I; Ferrante C; Gabrielli L; Prins LJ
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22223-22229. PubMed ID: 32833254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System.
    Barpuzary D; Hurst PJ; Patterson JP; Guan Z
    J Am Chem Soc; 2023 Feb; 145(6):3727-3735. PubMed ID: 36746118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate induced generation of transient self-assembled catalytic systems.
    Afrose SP; Ghosh C; Das D
    Chem Sci; 2021 Nov; 12(44):14674-14685. PubMed ID: 34820083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-reducible dissipative nanostructures formed at the solid-liquid interface.
    Soejima T; Amako Y; Ito S; Kimizuka N
    Langmuir; 2014 Dec; 30(47):14219-25. PubMed ID: 25370594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
    Ikeda T; Adachi H; Fueno H; Tanaka K; Haino T
    J Org Chem; 2017 Oct; 82(19):10062-10069. PubMed ID: 28862436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks.
    van Ravensteijn BGP; Voets IK; Kegel WK; Eelkema R
    Langmuir; 2020 Sep; 36(36):10639-10656. PubMed ID: 32787015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designed Negative Feedback from Transiently Formed Catalytic Nanostructures.
    Afrose SP; Bal S; Chatterjee A; Das K; Das D
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15783-15787. PubMed ID: 31476101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes.
    Schwarz PS; Tena-Solsona M; Dai K; Boekhoven J
    Chem Commun (Camb); 2022 Jan; 58(9):1284-1297. PubMed ID: 35014639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.
    Wang C; Wang Z; Zhang X
    Acc Chem Res; 2012 Apr; 45(4):608-18. PubMed ID: 22242811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles.
    Amano S; Borsley S; Leigh DA; Sun Z
    Nat Nanotechnol; 2021 Oct; 16(10):1057-1067. PubMed ID: 34625723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.