These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32313635)

  • 21. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae.
    Dittami SM; Heesch S; Olsen JL; Collén J
    J Phycol; 2017 Aug; 53(4):731-745. PubMed ID: 28509401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of the land-to-sea macroevolutionary transition on vertebral column disparification in Pinnipedia.
    Esteban JM; Martín-Serra A; Pérez-Ramos A; Rybczynski N; Jones K; Figueirido B
    Proc Biol Sci; 2024 Apr; 291(2020):20232752. PubMed ID: 38593849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mode of miniaturisation influences body shape evolution in New World anchovies (Engraulidae).
    Bloom DD; Kolmann M; Foster K; Watrous H
    J Fish Biol; 2020 Jan; 96(1):194-201. PubMed ID: 31729024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi.
    Van Bocxlaer B; Ortiz-Sepulveda CM; Gurdebeke PR; Vekemans X
    BMC Evol Biol; 2020 Jan; 20(1):5. PubMed ID: 31918659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body shape convergence driven by small size optimum in marine angelfishes.
    Frédérich B; Santini F; Konow N; Schnitzler J; Lecchini D; Alfaro ME
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28615351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crocodylomorph cranial shape evolution and its relationship with body size and ecology.
    Godoy PL
    J Evol Biol; 2020 Jan; 33(1):4-21. PubMed ID: 31566848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Body shape diversification along the benthic-pelagic axis in marine fishes.
    Friedman ST; Price SA; Corn KA; Larouche O; Martinez CM; Wainwright PC
    Proc Biol Sci; 2020 Jul; 287(1931):20201053. PubMed ID: 32693721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular species delimitation of marine trematodes over wide geographical ranges:
    Pérez-Ponce de León G; Solórzano-García B; Huston DC; Mendoza-Garfias B; Cabañas-Granillo J; Cutmore SC; Cribb TH
    Parasitology; 2024 Feb; 151(2):168-180. PubMed ID: 38037706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.
    Kirchhoff KN; Hauffe T; Stelbrink B; Albrecht C; Wilke T
    J Evol Biol; 2017 Aug; 30(8):1576-1591. PubMed ID: 28590074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Independent transitions to freshwater environments promote phenotypic divergence, not convergence, in stingrays.
    Magnuson A; Dean MN; Weaver J; Fontenelle JP; Lovejoy NR; Kolmann MA
    Integr Comp Biol; 2024 Apr; ():. PubMed ID: 38653716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogeny and jaw ontogeny of beloniform fishes.
    Lovejoy NR; Iranpour M; Collette BB
    Integr Comp Biol; 2004 Nov; 44(5):366-77. PubMed ID: 21676722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid evolution of body fluid regulation following independent invasions into freshwater habitats.
    Lee CE; Posavi M; Charmantier G
    J Evol Biol; 2012 Apr; 25(4):625-33. PubMed ID: 22296332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment.
    Lindgren AR; Pankey MS; Hochberg FG; Oakley TH
    BMC Evol Biol; 2012 Jul; 12():129. PubMed ID: 22839506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.
    Ravinet M; Takeuchi N; Kume M; Mori S; Kitano J
    PLoS One; 2014; 9(12):e112404. PubMed ID: 25460163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The multi-peak adaptive landscape of crocodylomorph body size evolution.
    Godoy PL; Benson RBJ; Bronzati M; Butler RJ
    BMC Evol Biol; 2019 Aug; 19(1):167. PubMed ID: 31390981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).
    Zelditch ML; Ye J; Mitchell JS; Swiderski DL
    Evolution; 2017 Mar; 71(3):633-649. PubMed ID: 28075012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent.
    Heger TJ; Mitchell EAD; Todorov M; Golemansky V; Lara E; Leander BS; Pawlowski J
    Mol Phylogenet Evol; 2010 Apr; 55(1):113-122. PubMed ID: 20004728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies).
    DeHaan LM; Burns MD; Egan JP; Bloom DD
    Am Nat; 2023 Dec; 202(6):830-850. PubMed ID: 38033182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disentangling the drivers of diversification in an imperiled group of freshwater fishes (Cyprinodontiformes: Goodeidae).
    Foster KL; Piller KR
    BMC Evol Biol; 2018 Jul; 18(1):116. PubMed ID: 30021522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.