These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32313911)

  • 1. Radical chemistry in oxidation flow reactors for atmospheric chemistry research.
    Peng Z; Jimenez JL
    Chem Soc Rev; 2020 May; 49(9):2570-2616. PubMed ID: 32313911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation.
    Li R; Palm BB; Ortega AM; Hlywiak J; Hu W; Peng Z; Day DA; Knote C; Brune WH; de Gouw JA; Jimenez JL
    J Phys Chem A; 2015 May; 119(19):4418-32. PubMed ID: 25789976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor.
    Sbai SE; Farida B
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18411-18420. PubMed ID: 31049860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Investigation of RO
    Iyer S; Reiman H; Møller KH; Rissanen MP; Kjaergaard HG; Kurtén T
    J Phys Chem A; 2018 Dec; 122(49):9542-9552. PubMed ID: 30449100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric photochemistry and secondary aerosol formation of urban air in Lyon, France.
    Sbai SE; Li C; Boreave A; Charbonnel N; Perrier S; Vernoux P; Bentayeb F; George C; Gil S
    J Environ Sci (China); 2021 Jan; 99():311-323. PubMed ID: 33183710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OH production from the photolysis of isoprene-derived peroxy radicals: cross-sections, quantum yields and atmospheric implications.
    Hansen RF; Lewis TR; Graham L; Whalley LK; Seakins PW; Heard DE; Blitz MA
    Phys Chem Chem Phys; 2017 Jan; 19(3):2332-2345. PubMed ID: 28054688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources.
    Waring MS; Wells JR
    Atmos Environ (1994); 2015 Apr; 106():382-391. PubMed ID: 26855604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary Organic Aerosol Formation from Ambient Air at an Urban Site in Beijing: Effects of OH Exposure and Precursor Concentrations.
    Liu J; Chu B; Chen T; Liu C; Wang L; Bao X; He H
    Environ Sci Technol; 2018 Jun; 52(12):6834-6841. PubMed ID: 29775300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors.
    He Y; Lambe AT; Seinfeld JH; Cappa CD; Pierce JR; Jathar SH
    Environ Sci Technol; 2022 May; 56(10):6262-6273. PubMed ID: 35504037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimolecular Peroxy Radical (RO
    Cho J; Mulvihill CR; Klippenstein SJ; Sivaramakrishnan R
    J Phys Chem A; 2023 Jan; 127(1):300-315. PubMed ID: 36562763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals.
    Praske E; Otkjær RV; Crounse JD; Hethcox JC; Stoltz BM; Kjaergaard HG; Wennberg PO
    J Phys Chem A; 2019 Jan; 123(2):590-600. PubMed ID: 30547575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of temperature-dependent non-PAN peroxynitrate formation, RO
    Färber M; Vereecken L; Fuchs H; Gkatzelis GI; Rohrer F; Wedel S; Wahner A; Novelli A
    Phys Chem Chem Phys; 2024 Feb; 26(6):5183-5194. PubMed ID: 38261377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonally Varying Secondary Organic Aerosol Formation From In-Situ Oxidation of Near-Highway Air.
    Saha PK; Reece SM; Grieshop AP
    Environ Sci Technol; 2018 Jul; 52(13):7192-7202. PubMed ID: 29847110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions.
    Geng L; Murray LT; Mickley LJ; Lin P; Fu Q; Schauer AJ; Alexander B
    Nature; 2017 Jun; 546(7656):133-136. PubMed ID: 28514452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics, products, and mechanisms of secondary organic aerosol formation.
    Ziemann PJ; Atkinson R
    Chem Soc Rev; 2012 Oct; 41(19):6582-605. PubMed ID: 22940672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-Pinene and β-Pinene by Hydroxyl Radicals.
    Xu L; Møller KH; Crounse JD; Otkjær RV; Kjaergaard HG; Wennberg PO
    J Phys Chem A; 2019 Feb; 123(8):1661-1674. PubMed ID: 30700088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxy radical chemistry during ozone photochemical pollution season at a suburban site in the boundary of Jiangsu-Anhui-Shandong-Henan region, China.
    Wei N; Zhao W; Yao Y; Wang H; Liu Z; Xu X; Rahman M; Zhang C; Fittschen C; Zhang W
    Sci Total Environ; 2023 Dec; 904():166355. PubMed ID: 37595920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
    Zhao Y; Thornton JA; Pye HOT
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12142-12147. PubMed ID: 30413618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals.
    Qi L; Nakao S; Cocker DR
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO
    Goldman MJ; Green WH; Kroll JH
    J Phys Chem A; 2021 Dec; 125(48):10303-10314. PubMed ID: 34843244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.