These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32313916)
1. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis. Fujii M; Minami A; Sugimoto H Nanoscale; 2020 Apr; 12(16):9266-9271. PubMed ID: 32313916 [TBL] [Abstract][Full Text] [Related]
2. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots. Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635 [TBL] [Abstract][Full Text] [Related]
3. The effects of drying technique and surface pre-treatment on the cytotoxicity and dissolution rate of luminescent porous silicon quantum dots in model fluids and living cells. Gongalsky MB; Tsurikova UA; Storey CJ; Evstratova YV; Kudryavtsev AA; Canham LT; Osminkina LA Faraday Discuss; 2020 Jun; 222(0):318-331. PubMed ID: 32104862 [TBL] [Abstract][Full Text] [Related]
4. Solution-processed silicon quantum dot photocathode for hydrogen evolution. Takada M; Inoue K; Sugimoto H; Fujii M Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34110304 [TBL] [Abstract][Full Text] [Related]
5. The application of amine-terminated silicon quantum dots on the imaging of human serum proteins after polyacrylamide gel electrophoresis (PAGE). Liu P; Na N; Huang L; He D; Huang C; Ouyang J Chemistry; 2012 Jan; 18(5):1438-43. PubMed ID: 22249969 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires. Valenta J; Bruhn B; Linnros J Nano Lett; 2011 Jul; 11(7):3003-9. PubMed ID: 21711002 [TBL] [Abstract][Full Text] [Related]
7. Effect of Water Adsorption on the Photoluminescence of Silicon Quantum Dots. Yang J; Fang H; Gao Y J Phys Chem Lett; 2016 May; 7(10):1788-93. PubMed ID: 27117881 [TBL] [Abstract][Full Text] [Related]
8. Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates. Chen Y; Pan B; Nie T; Chen P; Lu F; Jiang Z; Zhong Z Nanotechnology; 2010 Apr; 21(17):175701. PubMed ID: 20357407 [TBL] [Abstract][Full Text] [Related]
9. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
10. All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range. Sugimoto H; Fujii M; Fukuda Y; Imakita K; Akamatsu K Nanoscale; 2014 Jan; 6(1):122-6. PubMed ID: 24189524 [TBL] [Abstract][Full Text] [Related]
11. Highly luminescent CdSe/Cd(x)Zn(1-x)S quantum dots coated with thickness-controlled SiO2 shell through silanization. Yang P; Ando M; Murase N Langmuir; 2011 Aug; 27(15):9535-40. PubMed ID: 21732647 [TBL] [Abstract][Full Text] [Related]
12. A miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles. Harun NA; Horrocks BR; Fulton DA Nanoscale; 2011 Nov; 3(11):4733-41. PubMed ID: 21984383 [TBL] [Abstract][Full Text] [Related]
13. Tuning optical properties of Si quantum dots by π-conjugated capping molecules. Dung MX; Tung DD; Jeong S; Jeong HD Chem Asian J; 2013 Mar; 8(3):653-64. PubMed ID: 23307703 [TBL] [Abstract][Full Text] [Related]
14. Wafer-scale fabrication of isolated luminescent silicon quantum dots using standard CMOS technology. Jingjian Z; Pevere F; Gatty HK; Linnros J; Sychugov I Nanotechnology; 2020 Dec; 31(50):505204. PubMed ID: 33021208 [TBL] [Abstract][Full Text] [Related]
15. Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue. Sakiyama M; Sugimoto H; Fujii M Nanoscale; 2018 Aug; 10(29):13902-13907. PubMed ID: 29999078 [TBL] [Abstract][Full Text] [Related]
16. Impact of annealing on surface morphology and photoluminescence of self-assembled Ge and Si quantum dots. Samavati A; Othaman Z; Dabagh S; Ghoshal SK J Nanosci Nanotechnol; 2014 Jul; 14(7):5266-71. PubMed ID: 24758014 [TBL] [Abstract][Full Text] [Related]
17. Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots. Fan JW; Vankayala R; Chang CL; Chang CH; Chiang CS; Hwang KC Nanotechnology; 2015 May; 26(21):215703. PubMed ID: 25943071 [TBL] [Abstract][Full Text] [Related]
18. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Parveen S; Paul KK; Das R; Giri PK J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025 [TBL] [Abstract][Full Text] [Related]
19. Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approach. Chatterjee S; Mukherjee TK J Colloid Interface Sci; 2016 Sep; 478():29-35. PubMed ID: 27280537 [TBL] [Abstract][Full Text] [Related]
20. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Ratnesh RK; Mehata MS Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]