BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32314044)

  • 1. Costs and compensation in zooplankton pigmentation under countervailing threats of ultraviolet radiation and predation.
    Bashevkin SM; Christy JH; Morgan SG
    Oecologia; 2020 May; 193(1):111-123. PubMed ID: 32314044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoprotective benefits of pigmentation in the transparent plankton community: a comparative species experimental test.
    Bashevkin SM; Christy JH; Morgan SG
    Ecology; 2019 May; 100(5):e02680. PubMed ID: 30838643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation.
    Hansson LA
    Proc Biol Sci; 2000 Nov; 267(1459):2327-31. PubMed ID: 11413651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverging responses to threats across generations in zooplankton.
    Sha Y; Tesson SVM; Hansson LA
    Ecology; 2020 Nov; 101(11):e03145. PubMed ID: 32740928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour.
    Polo-Cavia N; Gomez-Mestre I
    Sci Rep; 2017 Jan; 7():39739. PubMed ID: 28051112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camouflaged or tanned: plasticity in freshwater snail pigmentation.
    Ahlgren J; Yang X; Hansson LA; Brönmark C
    Biol Lett; 2013 Oct; 9(5):20130464. PubMed ID: 24046875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postlarval chromatophores as an adaptation to ultraviolet radiation.
    Miner BG; Morgan SG; Hoffman JR
    J Exp Mar Biol Ecol; 2000 Jun; 249(2):235-248. PubMed ID: 10841937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-latitude zooplankton pigmentation plasticity in response to multiple threats.
    Lee M; Zhang H; Sha Y; Hegg A; Ugge GE; Vinterstare J; Škerlep M; Pärssinen V; Herzog SD; Björnerås C; Gollnisch R; Johansson E; Hu N; Nilsson PA; Hulthén K; Rengefors K; Langerhans RB; Brönmark C; Hansson LA
    R Soc Open Sci; 2019 Jul; 6(7):190321. PubMed ID: 31417735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia.
    Rhode SC; Pawlowski M; Tollrian R
    Nature; 2001 Jul; 412(6842):69-72. PubMed ID: 11452307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator-induced morphological defenses in marine zooplankton: a larval case study.
    Vaughn D
    Ecology; 2007 Apr; 88(4):1030-9. PubMed ID: 17536718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced tolerance expressed as relaxed behavioural threat response in millimetre-sized aquatic organisms.
    Hylander S; Ekvall MT; Bianco G; Yang X; Hansson LA
    Proc Biol Sci; 2014 Aug; 281(1788):20140364. PubMed ID: 24966309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloquium paper: human skin pigmentation as an adaptation to UV radiation.
    Jablonski NG; Chaplin G
    Proc Natl Acad Sci U S A; 2010 May; 107 Suppl 2(Suppl 2):8962-8. PubMed ID: 20445093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae.
    van Uitregt VO; Hurst TP; Wilson RS
    J Anim Ecol; 2012 Jan; 81(1):108-15. PubMed ID: 21714787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV radiation affects antipredatory defense traits in
    Eshun-Wilson F; Wolf R; Andersen T; Hessen DO; Sperfeld E
    Ecol Evol; 2020 Dec; 10(24):14082-14097. PubMed ID: 33732430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton.
    Hansson LA; Hylander S
    Photochem Photobiol Sci; 2009 Sep; 8(9):1266-75. PubMed ID: 19707615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation.
    Hansson LA; Hylander S; Sommaruga R
    Ecology; 2007 Aug; 88(8):1932-9. PubMed ID: 17824423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish kairomones induce spine elongation and reduce predation in marine crab larvae.
    Charpentier CL; Wright AJ; Cohen JH
    Ecology; 2017 Aug; 98(8):1989-1995. PubMed ID: 28512864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trade-offs between predation risk and growth benefits in the copepod Eurytemora affinis with contrasting pigmentation.
    Gorokhova E; Lehtiniemi M; Motwani NH
    PLoS One; 2013; 8(8):e71385. PubMed ID: 23940745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary bioaccumulation of UV-absorbing compounds, and post-ingestive fitness in larval planktotrophic crustaceans from coastal SW Atlantic.
    Marcoval MA; Pan J; Diaz AC; Fenucci JL
    Mar Environ Res; 2021 Aug; 170():105433. PubMed ID: 34364057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal constraints on predation risk assessment in a changing world.
    Chivers DP; Ramasamy RA; McCormick MI; Watson SA; Siebeck UE; Ferrari MC
    Sci Total Environ; 2014 Dec; 500-501():332-8. PubMed ID: 25237790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.