These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
681 related articles for article (PubMed ID: 32314072)
1. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Mörl F; Günther M; Riede JM; Hammer M; Schmitt S Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072 [TBL] [Abstract][Full Text] [Related]
2. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination. Arshad R; Zander T; Bashkuev M; Schmidt H Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589 [TBL] [Abstract][Full Text] [Related]
3. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study. Liu T; Khalaf K; Naserkhaki S; El-Rich M J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706 [TBL] [Abstract][Full Text] [Related]
4. Influence of passive elements on prediction of intradiscal pressure and muscle activation in lumbar musculoskeletal models. Wang K; Wang L; Deng Z; Jiang C; Niu W; Zhang M Comput Methods Programs Biomed; 2019 Aug; 177():39-46. PubMed ID: 31319959 [TBL] [Abstract][Full Text] [Related]
5. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Han KS; Zander T; Taylor WR; Rohlmann A Med Eng Phys; 2012 Jul; 34(6):709-16. PubMed ID: 21978915 [TBL] [Abstract][Full Text] [Related]
6. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study. Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346 [TBL] [Abstract][Full Text] [Related]
7. Effects of muscle dysfunction on lumbar spine mechanics. A finite element study based on a two motion segments model. Kong WZ; Goel VK; Gilbertson LG; Weinstein JN Spine (Phila Pa 1976); 1996 Oct; 21(19):2197-206; discussion 2206-7. PubMed ID: 8902963 [TBL] [Abstract][Full Text] [Related]
8. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints. Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R Clin Biomech (Bristol); 2004 May; 19(4):323-9. PubMed ID: 15109750 [TBL] [Abstract][Full Text] [Related]
9. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study. Liu T; Khalaf K; Adeeb S; El-Rich M J Biomech; 2019 Jan; 82():116-123. PubMed ID: 30389260 [TBL] [Abstract][Full Text] [Related]
10. Bending and compressive stresses acting on the lumbar spine during lifting activities. Dolan P; Earley M; Adams MA J Biomech; 1994 Oct; 27(10):1237-48. PubMed ID: 7962011 [TBL] [Abstract][Full Text] [Related]
11. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study. Naserkhaki S; Jaremko JL; El-Rich M J Biomech; 2016 Sep; 49(13):2909-2917. PubMed ID: 27448498 [TBL] [Abstract][Full Text] [Related]
12. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Rupp TK; Ehlers W; Karajan N; Günther M; Schmitt S Biomech Model Mechanobiol; 2015 Oct; 14(5):1081-105. PubMed ID: 25653134 [TBL] [Abstract][Full Text] [Related]
13. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy. Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245 [TBL] [Abstract][Full Text] [Related]
14. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model. Shahvarpour A; Shirazi-Adl A; Larivière C; Bazrgari B J Biomech; 2015 Jan; 48(1):44-52. PubMed ID: 25476501 [TBL] [Abstract][Full Text] [Related]
15. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Abouhossein A; Weisse B; Ferguson SJ Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):527-37. PubMed ID: 21128134 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure--a finite element study. Kuo CS; Hu HT; Lin RM; Huang KY; Lin PC; Zhong ZC; Hseih ML BMC Musculoskelet Disord; 2010 Jul; 11():151. PubMed ID: 20602783 [TBL] [Abstract][Full Text] [Related]
17. Effects of geometric individualisation of a human spine model on load sharing: neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution. Meszaros-Beller L; Hammer M; Riede JM; Pivonka P; Little JP; Schmitt S Biomech Model Mechanobiol; 2023 Apr; 22(2):669-694. PubMed ID: 36602716 [TBL] [Abstract][Full Text] [Related]
18. A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing. Azari F; Arjmand N; Shirazi-Adl A; Rahimi-Moghaddam T J Biomech; 2018 Mar; 70():157-165. PubMed ID: 28527584 [TBL] [Abstract][Full Text] [Related]
19. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Shirazi-Adl A; Parnianpour M Clin Biomech (Bristol); 2000 Dec; 15(10):718-25. PubMed ID: 11050353 [TBL] [Abstract][Full Text] [Related]
20. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Potvin JR; McGill SM; Norman RW Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]