BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32314451)

  • 21. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants.
    Cousins AB; Mullendore DL; Sonawane BV
    Plant J; 2020 Feb; 101(4):816-830. PubMed ID: 31960507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia.
    Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM
    J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenic perturbation of the decarboxylation phase of Crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth.
    Dever LV; Boxall SF; Kneřová J; Hartwell J
    Plant Physiol; 2015 Jan; 167(1):44-59. PubMed ID: 25378692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum.
    Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z
    Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of Phospho
    Boxall SF; Dever LV; Kneřová J; Gould PD; Hartwell J
    Plant Cell; 2017 Oct; 29(10):2519-2536. PubMed ID: 28887405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C
    Lim SD; Lee S; Choi WG; Yim WC; Cushman JC
    Front Plant Sci; 2019; 10():101. PubMed ID: 30804970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C
    Ferrari RC; Bittencourt PP; Rodrigues MA; Moreno-Villena JJ; Alves FRR; Gastaldi VD; Boxall SF; Dever LV; Demarco D; Andrade SCS; Edwards EJ; Hartwell J; Freschi L
    New Phytol; 2020 Feb; 225(4):1699-1714. PubMed ID: 31610019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model approaches to advance crassulacean acid metabolism system integration.
    Chomthong M; Griffiths H
    Plant J; 2020 Feb; 101(4):951-963. PubMed ID: 31943394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour.
    Lawson T; Simkin AJ; Kelly G; Granot D
    New Phytol; 2014 Sep; 203(4):1064-1081. PubMed ID: 25077787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species.
    Griffiths H; Robe WE; Girnus J; Maxwell K
    J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low internal air space in plants with crassulacean acid metabolism may be an anatomical spandrel.
    Leverett A; Borland AM; Inge EJ; Hartzell S
    Ann Bot; 2023 Nov; 132(4):811-817. PubMed ID: 37622678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diel dynamics of multi-omics in elkhorn fern provide new insights into weak CAM photosynthesis.
    Li C; Huang W; Han X; Zhao G; Zhang W; He W; Nie B; Chen X; Zhang T; Bai W; Zhang X; He J; Zhao C; Fernie AR; Tschaplinski TJ; Yang X; Yan S; Wang L
    Plant Commun; 2023 Sep; 4(5):100594. PubMed ID: 36960529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.
    Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE
    Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward multifaceted roles of sucrose in the regulation of stomatal movement.
    Lima VF; Medeiros DB; Dos Anjos L; Gago J; Fernie AR; Daloso DM
    Plant Signal Behav; 2018; 13(8):e1494468. PubMed ID: 30067434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.
    Griffiths H; Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2007 Feb; 143(2):1055-67. PubMed ID: 17142488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternative Crassulacean Acid Metabolism Modes Provide Environment-Specific Water-Saving Benefits in a Leaf Metabolic Model.
    Töpfer N; Braam T; Shameer S; Ratcliffe RG; Sweetlove LJ
    Plant Cell; 2020 Dec; 32(12):3689-3705. PubMed ID: 33093147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting photosynthetic pathway from anatomy using machine learning.
    Gilman IS; Heyduk K; Maya-Lastra C; Hancock LP; Edwards EJ
    New Phytol; 2024 May; 242(3):1029-1042. PubMed ID: 38173400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions.
    Hartzell S; Bartlett MS; Inglese P; Consoli S; Yin J; Porporato A
    Plant Cell Environ; 2021 Jan; 44(1):34-48. PubMed ID: 33073369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave.
    Yin H; Guo HB; Weston DJ; Borland AM; Ranjan P; Abraham PE; Jawdy SS; Wachira J; Tuskan GA; Tschaplinski TJ; Wullschleger SD; Guo H; Hettich RL; Gross SM; Wang Z; Visel A; Yang X
    BMC Genomics; 2018 Aug; 19(1):588. PubMed ID: 30081833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are crassulacean acid metabolism and C4 photosynthesis incompatible?
    Sage RF
    Funct Plant Biol; 2002 Jun; 29(6):775-785. PubMed ID: 32689525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.