BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32314451)

  • 41. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants.
    Liu D; Chen M; Mendoza B; Cheng H; Hu R; Li L; Trinh CT; Tuskan GA; Yang X
    J Exp Bot; 2019 Nov; 70(22):6621-6629. PubMed ID: 31562521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave.
    Abraham PE; Yin H; Borland AM; Weighill D; Lim SD; De Paoli HC; Engle N; Jones PC; Agh R; Weston DJ; Wullschleger SD; Tschaplinski T; Jacobson D; Cushman JC; Hettich RL; Tuskan GA; Yang X
    Nat Plants; 2016 Nov; 2():16178. PubMed ID: 27869799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.
    Chen LS; Nose A
    Ann Bot; 2004 Sep; 94(3):449-55. PubMed ID: 15277250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress.
    Amin AB; Rathnayake KN; Yim WC; Garcia TM; Wone B; Cushman JC; Wone BWM
    Front Plant Sci; 2019; 10():129. PubMed ID: 30853963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.
    Ceusters J; Borland AM; Taybi T; Frans M; Godts C; De Proft MP
    J Exp Bot; 2014 Jul; 65(13):3705-14. PubMed ID: 24803500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana.
    Wang Y; Smith JAC; Zhu XG; Long SP
    New Phytol; 2023 Sep; 239(6):2180-2196. PubMed ID: 37537720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier.
    Duarte HM; Jakovljevic I; Kaiser F; Lüttge U
    Planta; 2005 Apr; 220(6):809-16. PubMed ID: 15843962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photosynthesis and leaf structure of F1 hybrids between Cymbidium ensifolium (C3) and C. bicolor subsp. pubescens (CAM).
    Yamaga-Hatakeyama Y; Okutani M; Hatakeyama Y; Yabiku T; Yukawa T; Ueno O
    Ann Bot; 2023 Nov; 132(4):895-907. PubMed ID: 36579478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stomatal responses in isolated epidermis of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr.
    Jewer PC; Incoll LD; Howarth GL
    Planta; 1981 Nov; 153(3):238-45. PubMed ID: 24276827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stomatal responses to carbon dioxide of isolated epidermis from a C3 plant, the Argenteum mutant of Pisum sativum L., and a crassulacean-acid-metabolism plant Kalanchoë daigremontiana Hamet et Perr.
    Jewer PC; Neales TF; Incoll LD
    Planta; 1985 Jul; 164(4):495-500. PubMed ID: 24248222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.
    Brilhaus D; Bräutigam A; Mettler-Altmann T; Winter K; Weber AP
    Plant Physiol; 2016 Jan; 170(1):102-22. PubMed ID: 26530316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchöe, and Opuntia.
    Winter K; Garcia M; Holtum JA
    J Exp Bot; 2008; 59(7):1829-40. PubMed ID: 18440928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.
    Flexas J; Díaz-Espejo A; Conesa MA; Coopman RE; Douthe C; Gago J; Gallé A; Galmés J; Medrano H; Ribas-Carbo M; Tomàs M; Niinemets Ü
    Plant Cell Environ; 2016 May; 39(5):965-82. PubMed ID: 26297108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata.
    Chen LS; Lin Q; Nose A
    J Exp Bot; 2002 Feb; 53(367):341-50. PubMed ID: 11807138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering crassulacean acid metabolism to improve water-use efficiency.
    Borland AM; Hartwell J; Weston DJ; Schlauch KA; Tschaplinski TJ; Tuskan GA; Yang X; Cushman JC
    Trends Plant Sci; 2014 May; 19(5):327-38. PubMed ID: 24559590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO
    Franco-Navarro JD; Rosales MA; Cubero-Font P; Calvo P; Álvarez R; Diaz-Espejo A; Colmenero-Flores JM
    Plant J; 2019 Sep; 99(5):815-831. PubMed ID: 31148340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maltose Processing and Not β-Amylase Activity Curtails Hydrolytic Starch Degradation in the CAM Orchid
    Ceusters N; Frans M; Van den Ende W; Ceusters J
    Front Plant Sci; 2019; 10():1386. PubMed ID: 31798600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics.
    Zhu M; Dai S; McClung S; Yan X; Chen S
    Mol Cell Proteomics; 2009 Apr; 8(4):752-66. PubMed ID: 19106087
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrate Assimilation and Crassulacean Acid Metabolism in Leaves of Kalanchoë fedtschenkoi Variety Marginata.
    Chang NK
    Plant Physiol; 1981 Aug; 68(2):464-8. PubMed ID: 16661938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lacking chloroplasts in guard cells of crumpled leaf attenuates stomatal opening: both guard cell chloroplasts and mesophyll contribute to guard cell ATP levels.
    Wang SW; Li Y; Zhang XL; Yang HQ; Han XF; Liu ZH; Shang ZL; Asano T; Yoshioka Y; Zhang CG; Chen YL
    Plant Cell Environ; 2014 Sep; 37(9):2201-10. PubMed ID: 24506786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.