BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32314451)

  • 61. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar.
    Lawson T; Oxborough K; Morison JI; Baker NR
    J Exp Bot; 2003 Jul; 54(388):1743-52. PubMed ID: 12773521
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum.
    Taybi T; Cushman JC; Borland AM
    J Plant Physiol; 2017 Nov; 218():144-154. PubMed ID: 28822907
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity.
    Pereira PN; Smith JAC; Mercier H
    Physiol Plant; 2017 Aug; 160(4):361-372. PubMed ID: 28393374
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Diel leaf growth cycles in Clusia spp. are related to changes between C3 photosynthesis and crassulacean acid metabolism during development and during water stress.
    Walter A; Christ MM; Rascher U; Schurr U; Osmond B
    Plant Cell Environ; 2008 Apr; 31(4):484-91. PubMed ID: 18182020
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding trait diversity associated with crassulacean acid metabolism (CAM).
    Niechayev NA; Pereira PN; Cushman JC
    Curr Opin Plant Biol; 2019 Jun; 49():74-85. PubMed ID: 31284077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.
    Yang X; Cushman JC; Borland AM; Edwards EJ; Wullschleger SD; Tuskan GA; Owen NA; Griffiths H; Smith JA; De Paoli HC; Weston DJ; Cottingham R; Hartwell J; Davis SC; Silvera K; Ming R; Schlauch K; Abraham P; Stewart JR; Guo HB; Albion R; Ha J; Lim SD; Wone BW; Yim WC; Garcia T; Mayer JA; Petereit J; Nair SS; Casey E; Hettich RL; Ceusters J; Ranjan P; Palla KJ; Yin H; Reyes-García C; Andrade JL; Freschi L; Beltrán JD; Dever LV; Boxall SF; Waller J; Davies J; Bupphada P; Kadu N; Winter K; Sage RF; Aguilar CN; Schmutz J; Jenkins J; Holtum JA
    New Phytol; 2015 Aug; 207(3):491-504. PubMed ID: 26153373
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C
    Kong W; Yoo MJ; Zhu D; Noble JD; Kelley TM; Li J; Kirst M; Assmann SM; Chen S
    Plant Mol Biol; 2020 Aug; 103(6):653-667. PubMed ID: 32468353
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ecophysiology of constitutive and facultative CAM photosynthesis.
    Winter K
    J Exp Bot; 2019 Nov; 70(22):6495-6508. PubMed ID: 30810162
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.
    Bohn A; Hinderlich S; Hütt MT; Kaiser F; Lüttge U
    Biol Chem; 2003 May; 384(5):721-8. PubMed ID: 12817468
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Water exchange between the Chlorenchyma and the Hydrenchyma and its physiological role in leaves with Crassulacean acid metabolism.
    Cabrita PJV
    Physiol Plant; 2024; 176(2):e14221. PubMed ID: 38450837
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Altered Gene Regulatory Networks Are Associated With the Transition From C
    Heyduk K; Hwang M; Albert V; Silvera K; Lan T; Farr K; Chang TH; Chan MT; Winter K; Leebens-Mack J
    Front Plant Sci; 2018; 9():2000. PubMed ID: 30745906
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Defining Mechanisms of C
    Tan B; Chen S
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685878
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.
    Borland AM; Wullschleger SD; Weston DJ; Hartwell J; Tuskan GA; Yang X; Cushman JC
    Plant Cell Environ; 2015 Sep; 38(9):1833-49. PubMed ID: 25366937
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves.
    Leverett A; Hartzell S; Winter K; Garcia M; Aranda J; Virgo A; Smith A; Focht P; Rasmussen-Arda A; Willats WGT; Cowan-Turner D; Borland AM
    Plant Cell Environ; 2023 May; 46(5):1472-1488. PubMed ID: 36624682
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Leaf starch metabolism sets the phase of stomatal rhythm.
    Westgeest AJ; Dauzat M; Simonneau T; Pantin F
    Plant Cell; 2023 Sep; 35(9):3444-3469. PubMed ID: 37260348
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates.
    Zhou S; Medlyn B; Sabaté S; Sperlich D; Prentice IC
    Tree Physiol; 2014 Oct; 34(10):1035-46. PubMed ID: 25192884
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano, Coleus amboinicus (Lamiaceae).
    Winter K; Virgo A; Garcia M; Aranda J; Holtum JAM
    Funct Plant Biol; 2021 Jun; 48(7):647-654. PubMed ID: 32919492
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM).
    Cushman JC; Tillett RL; Wood JA; Branco JM; Schlauch KA
    J Exp Bot; 2008; 59(7):1875-94. PubMed ID: 18319238
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor.
    Borland AM; Griffiths H
    Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Are thick leaves, large mesophyll cells and small intercellular air spaces requisites for CAM?
    Herrera A
    Ann Bot; 2020 May; 125(6):859-868. PubMed ID: 31970387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.