BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32314451)

  • 81. Veinal-mesophyll interaction under biotic stress.
    Nosek M; Rozpądek P; Kornaś A; Kuźniak E; Schmitt A; Miszalski Z
    J Plant Physiol; 2015 Aug; 185():52-6. PubMed ID: 26276405
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.
    Balsamo RA; Uribe EG
    Planta; 1988 Feb; 173(2):183-9. PubMed ID: 24226398
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future.
    Heyduk K
    Plant Physiol; 2022 Aug; 190(1):19-30. PubMed ID: 35748752
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The 'mother of thousands' (Kalanchoë daigremontiana): a plant model for asexual reproduction and CAM studies.
    Garcês H; Sinha N
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.emo133. PubMed ID: 20147034
    [TBL] [Abstract][Full Text] [Related]  

  • 85. CAM photosynthesis: the acid test.
    Winter K; Smith JAC
    New Phytol; 2022 Jan; 233(2):599-609. PubMed ID: 34637529
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The role of transitory starch in C(3), CAM, and C(4) metabolism and opportunities for engineering leaf starch accumulation.
    Weise SE; van Wijk KJ; Sharkey TD
    J Exp Bot; 2011 May; 62(9):3109-18. PubMed ID: 21430293
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mesophyll-derived sugars are positive regulators of light-driven stomatal opening.
    Flütsch S; Santelia D
    New Phytol; 2021 Jun; 230(5):1754-1760. PubMed ID: 33666260
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Roles of sucrose in guard cell regulation.
    Daloso DM; Dos Anjos L; Fernie AR
    New Phytol; 2016 Aug; 211(3):809-18. PubMed ID: 27060199
    [TBL] [Abstract][Full Text] [Related]  

  • 89. How to resolve the enigma of diurnal malate remobilisation from the vacuole in plants with crassulacean acid metabolism?
    Ceusters N; Borland AM; Ceusters J
    New Phytol; 2021 Mar; 229(6):3116-3124. PubMed ID: 33159327
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Resolving the central metabolism of Arabidopsis guard cells.
    Robaina-Estévez S; Daloso DM; Zhang Y; Fernie AR; Nikoloski Z
    Sci Rep; 2017 Aug; 7(1):8307. PubMed ID: 28814793
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Engineering Crassulacean Acid Metabolism in C
    Yang X; Liu Y; Yuan G; Weston DJ; Tuskan GA
    Cold Spring Harb Perspect Biol; 2024 Apr; 16(4):. PubMed ID: 38052496
    [TBL] [Abstract][Full Text] [Related]  

  • 93. S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition.
    Abat JK; Mattoo AK; Deswal R
    FEBS J; 2008 Jun; 275(11):2862-72. PubMed ID: 18445036
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The Effect of Elevated Concentrations of Fructose 2,6-Bisphosphate on Carbon Metabolism during Deacidification in the Crassulacean Acid Metabolism Plant Kalanchöe daigremontiana.
    Truesdale MR; Toldi O; Scott P
    Plant Physiol; 1999 Nov; 121(3):957-964. PubMed ID: 10557245
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Enzyme Regulation in Crassulacean Acid Metabolism Photosynthesis : Studies on the Ferredoxin/Thioredoxin System of KalanchoE daigremontiana.
    Hutcheson SW; Buchanan BB
    Plant Physiol; 1983 Jul; 72(3):870-6. PubMed ID: 16663101
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.
    Wai CM; VanBuren R; Zhang J; Huang L; Miao W; Edger PP; Yim WC; Priest HD; Meyers BC; Mockler T; Smith JAC; Cushman JC; Ming R
    Plant J; 2017 Oct; 92(1):19-30. PubMed ID: 28670834
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier.
    Wyka TP; Duarte HM; Lüttge UE
    Plant Biol (Stuttg); 2005 Mar; 7(2):176-81. PubMed ID: 15822013
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis.
    Ceusters N; Luca S; Feil R; Claes JE; Lunn JE; Van den Ende W; Ceusters J
    J Exp Bot; 2019 Jun; 70(12):3269-3281. PubMed ID: 30972416
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ecophysiological studies in Kalanchoë porphyrocalyx (Baker) and K. miniata (Hils et Bojer), two species performing highly flexible CAM.
    Brulfert J; Ravelomanana D; Güçlü S; Kluge M
    Photosynth Res; 1996 Jul; 49(1):29-36. PubMed ID: 24271531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.