These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32314575)
1. Sulfenic Acid-Mediated on-Site-Specific Immobilization of Mitochondrial-Targeted NIR Fluorescent Probe for Prolonged Tumor Imaging. Gao Y; Sun R; Zhao M; Ding J; Wang A; Ye S; Zhang Y; Mao Q; Xie W; Ma G; Shi H Anal Chem; 2020 May; 92(10):6977-6983. PubMed ID: 32314575 [TBL] [Abstract][Full Text] [Related]
2. A mitochondria-selective near-infrared-emitting fluorescent dye for cellular imaging studies. Choi P; Noguchi K; Ishiyama M; Denny WA; Jose J Bioorg Med Chem Lett; 2018 Jun; 28(11):2013-2017. PubMed ID: 29731365 [TBL] [Abstract][Full Text] [Related]
3. Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. Lyu Y; Zhen X; Miao Y; Pu K ACS Nano; 2017 Jan; 11(1):358-367. PubMed ID: 27997794 [TBL] [Abstract][Full Text] [Related]
4. An Intramolecular Rotor-Bridged Dimeric Cyanine Photothermal Transducer for Efficient Near-Infrared II Fluorescence Imaging-Guided Mitochondria-Targeted Phototherapy. Yu JF; Li J; Li M ACS Sens; 2024 Jul; 9(7):3581-3593. PubMed ID: 38958530 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238 [TBL] [Abstract][Full Text] [Related]
6. Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Li J; Chen K; Liu H; Cheng K; Yang M; Zhang J; Cheng JD; Zhang Y; Cheng Z Bioconjug Chem; 2012 Aug; 23(8):1704-11. PubMed ID: 22812530 [TBL] [Abstract][Full Text] [Related]
7. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. Zhang S; Chen H; Wang L; Liu C; Liu L; Sun Y; Shen XC J Mater Chem B; 2021 Jan; 9(4):1089-1095. PubMed ID: 33427258 [TBL] [Abstract][Full Text] [Related]
8. Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function. Li Z; Forshaw TE; Holmila RJ; Vance SA; Wu H; Poole LB; Furdui CM; King SB Chem Res Toxicol; 2019 Mar; 32(3):526-534. PubMed ID: 30784263 [TBL] [Abstract][Full Text] [Related]
9. Red Light-Initiated Cross-Linking of NIR Probes to Cytoplasmic RNA: An Innovative Strategy for Prolonged Imaging and Unexpected Tumor Suppression. Ye S; Cui C; Cheng X; Zhao M; Mao Q; Zhang Y; Wang A; Fang J; Zhao Y; Shi H J Am Chem Soc; 2020 Dec; 142(51):21502-21512. PubMed ID: 33306393 [TBL] [Abstract][Full Text] [Related]
10. A visible and near-infrared, dual emission fluorescent probe based on thiol reactivity for selectively tracking mitochondrial glutathione in vitro. Xu Y; Li R; Zhou X; Li W; Ernest U; Wan H; Li L; Chen H; Yuan Z Talanta; 2019 Dec; 205():120125. PubMed ID: 31450407 [TBL] [Abstract][Full Text] [Related]
11. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid. Zhou L; Lu DQ; Wang Q; Hu S; Wang H; Sun H; Zhang X Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():129-134. PubMed ID: 27236136 [TBL] [Abstract][Full Text] [Related]
12. Endogenous ROS-Mediated Covalent Immobilization of Gold Nanoparticles in Mitochondria: A "Sharp Sword" in Tumor Radiotherapy. Zhao Y; Feng Y; Li J; Cui C; Wang A; Fang J; Zhang Y; Ye S; Mao Q; Wang X; Shi H ACS Chem Biol; 2022 Aug; 17(8):2355-2365. PubMed ID: 35852948 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Cheng Z; Levi J; Xiong Z; Gheysens O; Keren S; Chen X; Gambhir SS Bioconjug Chem; 2006; 17(3):662-9. PubMed ID: 16704203 [TBL] [Abstract][Full Text] [Related]
14. A ratiometric near-infrared fluorescent probe based on a novel reactive cyanine platform for mitochondrial pH detection. Wan S; Xia S; Medford J; Durocher E; Steenwinkel TE; Rule L; Zhang Y; Luck RL; Werner T; Liu H J Mater Chem B; 2021 Jul; 9(25):5150-5161. PubMed ID: 34132313 [TBL] [Abstract][Full Text] [Related]
15. Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Liang X; Shang W; Chi C; Zeng C; Wang K; Fang C; Chen Q; Liu H; Fan Y; Tian J Cancer Lett; 2016 Dec; 383(2):243-249. PubMed ID: 27693557 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria targeting and near-infrared fluorescence imaging of a novel heptamethine cyanine anticancer agent. Ning J; Huang B; Wei Z; Li W; Zheng H; Ma L; Xing Z; Niu H; Huang W Mol Med Rep; 2017 Jun; 15(6):3761-3766. PubMed ID: 28440435 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria-Immobilized Fluorescent Probe for the Detection of Hypochlorite in Living Cells, Tissues, and Zebrafishes. Li MY; Li K; Liu YH; Zhang H; Yu KK; Liu X; Yu XQ Anal Chem; 2020 Feb; 92(4):3262-3269. PubMed ID: 31957430 [TBL] [Abstract][Full Text] [Related]
18. Theranostic Polyaminocarboxylate-Cyanine-Transferrin Conjugate for Anticancer Therapy and Near-Infrared Optical Imaging. Kang CS; Ren S; Sun X; Chong HS ChemMedChem; 2016 Oct; 11(19):2188-2193. PubMed ID: 27624789 [TBL] [Abstract][Full Text] [Related]
19. A near-infrared fluorescent probe based on a hemicyanine dye with an oxazolidine switch for mitochondrial pH detection. Mazi W; Yan Y; Zhang Y; Xia S; Wan S; Tajiri M; Luck RL; Liu H J Mater Chem B; 2021 Jan; 9(3):857-863. PubMed ID: 33367439 [TBL] [Abstract][Full Text] [Related]
20. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. Han C; Yang H; Chen M; Su Q; Feng W; Li F ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]