These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32315072)

  • 1. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation.
    Unciuleac MC; Goldgur Y; Shuman S
    Nucleic Acids Res; 2020 Jun; 48(10):5603-5615. PubMed ID: 32315072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi.
    Unciuleac MC; Shuman S
    RNA; 2015 May; 21(5):824-32. PubMed ID: 25740837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2592-2597. PubMed ID: 28223499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase.
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13868-73. PubMed ID: 26512110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.
    Raymond A; Shuman S
    Nucleic Acids Res; 2007; 35(3):839-49. PubMed ID: 17204483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK; Ho CK; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(32):29454-62. PubMed ID: 12766156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided mutational analysis of T4 RNA ligase 1.
    Wang LK; Schwer B; Shuman S
    RNA; 2006 Dec; 12(12):2126-34. PubMed ID: 17068206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates.
    Unciuleac MC; Goldgur Y; Shuman S
    J Biol Chem; 2019 Mar; 294(13):5094-5104. PubMed ID: 30718283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analysis of T4 RNA ligase 2.
    Yin S; Ho CK; Shuman S
    J Biol Chem; 2003 May; 278(20):17601-8. PubMed ID: 12611899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
    Nandakumar J; Shuman S; Lima CD
    Cell; 2006 Oct; 127(1):71-84. PubMed ID: 17018278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme.
    Zhelkovsky AM; McReynolds LA
    BMC Mol Biol; 2012 Jul; 13():24. PubMed ID: 22809063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA and RNA ligases: structural variations and shared mechanisms.
    Pascal JM
    Curr Opin Struct Biol; 2008 Feb; 18(1):96-105. PubMed ID: 18262407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of RNA ligase.
    Ho CK; Wang LK; Lima CD; Shuman S
    Structure; 2004 Feb; 12(2):327-39. PubMed ID: 14962393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and two-metal mechanism of fungal tRNA ligase.
    Banerjee A; Ghosh S; Goldgur Y; Shuman S
    Nucleic Acids Res; 2019 Feb; 47(3):1428-1439. PubMed ID: 30590734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent catalysis in nucleotidyl transfer. A KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases.
    Cong P; Shuman S
    J Biol Chem; 1993 Apr; 268(10):7256-60. PubMed ID: 8385101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of single amino acid changes in the region of the adenylylation site of T4 RNA ligase.
    Heaphy S; Singh M; Gait MJ
    Biochemistry; 1987 Mar; 26(6):1688-96. PubMed ID: 3036206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis.
    Viollet S; Fuchs RT; Munafo DB; Zhuang F; Robb GB
    BMC Biotechnol; 2011 Jul; 11():72. PubMed ID: 21722378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adenylyltransferase domain of bacterial Pnkp defines a unique RNA ligase family.
    Smith P; Wang LK; Nair PA; Shuman S
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2296-301. PubMed ID: 22308407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of the adenylylation site in T4 RNA ligase.
    Thøgersen HC; Morris HR; Rand KN; Gait MJ
    Eur J Biochem; 1985 Mar; 147(2):325-9. PubMed ID: 3882425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.