BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32315102)

  • 1. Thiourea-Catalyzed C-F Bond Activation: Amination of Benzylic Fluorides.
    Houle C; Savoie PR; Davies C; Jardel D; Champagne PA; Bibal B; Paquin JF
    Chemistry; 2020 Aug; 26(46):10620-10625. PubMed ID: 32315102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triol-promoted activation of C-F bonds: Amination of benzylic fluorides under highly concentrated conditions mediated by 1,1,1-tris(hydroxymethyl)propane.
    Champagne PA; Saint-Martin A; Drouin M; Paquin JF
    Beilstein J Org Chem; 2013; 9():2451-6. PubMed ID: 24367412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Exploration of Dirhodium Complex-Catalyzed Selective Intermolecular Amination of Tertiary vs. Benzylic C-H Bonds.
    Su XX; Chen XH; Ding DB; She YB; Yang YF
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereochemical outcomes of C-F activation reactions of benzyl fluoride.
    Keddie NS; Champagne PA; Desroches J; Paquin JF; O'Hagan D
    Beilstein J Org Chem; 2018; 14():106-113. PubMed ID: 29441134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eosin Y as a Redox Catalyst and Photosensitizer for Sequential Benzylic C-H Amination and Oxidation.
    Yan DM; Zhao QQ; Rao L; Chen JR; Xiao WJ
    Chemistry; 2018 Nov; 24(63):16895-16901. PubMed ID: 30126062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion of Diazo Esters into C-F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF
    Wang F; Nishimoto Y; Yasuda M
    J Am Chem Soc; 2021 Dec; 143(49):20616-20621. PubMed ID: 34766748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.
    Champagne PA; Benhassine Y; Desroches J; Paquin JF
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13835-9. PubMed ID: 25303636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild and selective activation and substitution of strong aliphatic C-F bonds.
    Janjetovic M; Träff AM; Hilmersson G
    Chemistry; 2015 Feb; 21(9):3772-7. PubMed ID: 25601723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.
    Lyaskovskyy V; Suarez AI; Lu H; Jiang H; Zhang XP; de Bruin B
    J Am Chem Soc; 2011 Aug; 133(31):12264-73. PubMed ID: 21711027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-tosyloxycarbamates as reagents in rhodium-catalyzed C-H amination reactions.
    Huard K; Lebel H
    Chemistry; 2008; 14(20):6222-30. PubMed ID: 18512829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds.
    Ye L; Tian Y; Meng X; Gu QS; Liu XY
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1129-1133. PubMed ID: 31703156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-free, highly efficient organocatalytic amination of benzylic C-H bonds.
    Xue Q; Xie J; Li H; Cheng Y; Zhu C
    Chem Commun (Camb); 2013 May; 49(35):3700-2. PubMed ID: 23536004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-catalyzed substitution and cross-coupling of benzylic fluorides.
    Blessley G; Holden P; Walker M; Brown JM; Gouverneur V
    Org Lett; 2012 Jun; 14(11):2754-7. PubMed ID: 22594918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-catalyzed intramolecular allylic C-H amination.
    Paradine SM; White MC
    J Am Chem Soc; 2012 Feb; 134(4):2036-9. PubMed ID: 22260649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study.
    Zhu JL; Zhang Y; Liu C; Zheng AM; Wang W
    J Org Chem; 2012 Nov; 77(21):9813-25. PubMed ID: 23043446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Oxidation of Benzylic C-H Bonds Catalyzed by Cu(II)/{PMo
    Li P; Wang Y; Wang X; Wang Y; Liu Y; Huang K; Hu J; Duan L; Hu C; Liu J
    J Org Chem; 2020 Mar; 85(5):3101-3109. PubMed ID: 31944763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis(sulfonylimide)ruthenium(VI) porphyrins: X-ray crystal structure and mechanism of C-H bond amination by density functional theory calculations.
    Guo Z; Guan X; Huang JS; Tsui WM; Lin Z; Che CM
    Chemistry; 2013 Aug; 19(34):11320-31. PubMed ID: 23818419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.