These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
581 related articles for article (PubMed ID: 32315106)
1. Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction. Zhao CX; Li BQ; Liu JN; Zhang Q Angew Chem Int Ed Engl; 2021 Feb; 60(9):4448-4463. PubMed ID: 32315106 [TBL] [Abstract][Full Text] [Related]
2. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction. Tong M; Wang L; Fu H Small Methods; 2021 Oct; 5(10):e2100865. PubMed ID: 34927931 [TBL] [Abstract][Full Text] [Related]
3. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. Sun X; Zhang P; Zhang B; Xu C Small; 2024 Dec; 20(49):e2405624. PubMed ID: 39252646 [TBL] [Abstract][Full Text] [Related]
4. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. Chen S; Cui M; Yin Z; Xiong J; Mi L; Li Y ChemSusChem; 2021 Jan; 14(1):73-93. PubMed ID: 33089643 [TBL] [Abstract][Full Text] [Related]
5. The atomic-level regulation of single-atom site catalysts for the electrochemical CO Qu Q; Ji S; Chen Y; Wang D; Li Y Chem Sci; 2021 Feb; 12(12):4201-4215. PubMed ID: 34168747 [TBL] [Abstract][Full Text] [Related]
6. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. Cui X; Gao L; Lu CH; Ma R; Yang Y; Lin Z Nano Converg; 2022 Jul; 9(1):34. PubMed ID: 35867176 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Insights on ORR Activity of Sn-N-C Single-Atom Catalysts. Zhang Y; Li B; Su Y Molecules; 2023 Jul; 28(14):. PubMed ID: 37513442 [TBL] [Abstract][Full Text] [Related]
8. Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H Liu J; Gong Z; Yan M; He G; Gong H; Ye G; Fei H Small; 2022 Jan; 18(3):e2103824. PubMed ID: 34729914 [TBL] [Abstract][Full Text] [Related]
9. Atomically Dispersed Selenium Sites on Nitrogen-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Hu H; Wang J; Cui B; Zheng X; Lin J; Deng Y; Han X Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202114441. PubMed ID: 34806271 [TBL] [Abstract][Full Text] [Related]
10. Flame-Assisted Synthesis of O-Coordinated Single-Atom Catalysts for Efficient Electrocatalytic Oxygen Reduction and Hydrogen Evolution Reaction. Li J; Li H; Xie W; Li S; Song Y; Fan K; Lee JY; Shao M Small Methods; 2022 Jan; 6(1):e2101324. PubMed ID: 35041290 [TBL] [Abstract][Full Text] [Related]
11. Electrocatalysis Mechanism and Structure-Activity Relationship of Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrocatalytic Reactions. Yuan LJ; Sui XL; Liu C; Zhuo YL; Li Q; Pan H; Wang ZB Small Methods; 2023 Mar; 7(3):e2201524. PubMed ID: 36642792 [TBL] [Abstract][Full Text] [Related]
12. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Wang Y; Wang D; Li Y Adv Mater; 2021 Aug; 33(34):e2008151. PubMed ID: 34240475 [TBL] [Abstract][Full Text] [Related]
13. Reconstructing 1D Fe Single-atom Catalytic Structure on 2D Graphene Film for High-Efficiency Oxygen Reduction Reaction. Zhu G; Qi Y; Liu F; Ma S; Xiang G; Jin F; Liu Z; Wang W ChemSusChem; 2021 Feb; 14(3):866-875. PubMed ID: 33236522 [TBL] [Abstract][Full Text] [Related]
14. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Song Z; Zhu YN; Liu H; Banis MN; Zhang L; Li J; Doyle-Davis K; Li R; Sham TK; Yang L; Young A; Botton GA; Liu LM; Sun X Small; 2020 Oct; 16(43):e2003096. PubMed ID: 33015944 [TBL] [Abstract][Full Text] [Related]
15. Microenvironment Engineering of Single/Dual-Atom Catalysts for Electrocatalytic Application. Gao Y; Liu B; Wang D Adv Mater; 2023 Aug; 35(31):e2209654. PubMed ID: 36813572 [TBL] [Abstract][Full Text] [Related]
16. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Shah SSA; Najam T; Bashir MS; Javed MS; Rahman AU; Luque R; Bao SJ Small; 2022 May; 18(18):e2106279. PubMed ID: 35338585 [TBL] [Abstract][Full Text] [Related]
17. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Peng Y; Lu B; Chen S Adv Mater; 2018 Nov; 30(48):e1801995. PubMed ID: 30132997 [TBL] [Abstract][Full Text] [Related]
18. Single-atom catalysts for electrochemical applications. Ren S; Cao X; Jiang Z; Yu Z; Zhang T; Wei S; Fan Q; Yang J; Mao J; Wang D Chem Commun (Camb); 2023 Feb; 59(18):2560-2570. PubMed ID: 36748903 [TBL] [Abstract][Full Text] [Related]
19. Atomic-Level Interface Engineering for Boosting Oxygen Electrocatalysis Performance of Single-Atom Catalysts: From Metal Active Center to the First Coordination Sphere. An Q; Bo S; Jiang J; Gong C; Su H; Cheng W; Liu Q Adv Sci (Weinh); 2023 Feb; 10(4):e2205031. PubMed ID: 36417569 [TBL] [Abstract][Full Text] [Related]
20. Molecule-level graphdiyne coordinated transition metals as a new class of bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Feng Z; Li R; Ma Y; Li Y; Wei D; Tang Y; Dai X Phys Chem Chem Phys; 2019 Sep; 21(35):19651-19659. PubMed ID: 31468048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]