These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32315191)

  • 41. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.
    Kim H; Lee WJ; Farrell AC; Balgarkashi A; Huffaker DL
    Nano Lett; 2017 Sep; 17(9):5244-5250. PubMed ID: 28759243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.
    Cavalli A; Wang J; Esmaeil Zadeh I; Reimer ME; Verheijen MA; Soini M; Plissard SR; Zwiller V; Haverkort JE; Bakkers EP
    Nano Lett; 2016 May; 16(5):3071-7. PubMed ID: 27045232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Doping evaluation of InP nanowires for tandem junction solar cells.
    Lindelöw F; Heurlin M; Otnes G; Dagytė V; Lindgren D; Hultin O; Storm K; Samuelson L; Borgström M
    Nanotechnology; 2016 Feb; 27(6):065706. PubMed ID: 26762762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dopant-Induced Modifications of Ga
    Bologna N; Wirths S; Francaviglia L; Campanini M; Schmid H; Theofylaktopoulos V; Moselund KE; Fontcuberta I Morral A; Erni R; Riel H; Rossell MD
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32588-32596. PubMed ID: 30160109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.
    Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ
    Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strong Spin-Orbit Contribution to the Hall Coefficient of Two-Dimensional Hole Systems.
    Liu H; Marcellina E; Hamilton AR; Culcer D
    Phys Rev Lett; 2018 Aug; 121(8):087701. PubMed ID: 30192606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoscale electrical analyses of axial-junction GaAsP nanowires for solar cell applications.
    Saket O; Himwas C; Piazza V; Bayle F; Cattoni A; Oehler F; Patriarche G; Travers L; Collin S; Julien FH; Harmand JC; Tchernycheva M
    Nanotechnology; 2020 Apr; 31(14):145708. PubMed ID: 31846937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator.
    Liu M; Zhang J; Chang CZ; Zhang Z; Feng X; Li K; He K; Wang LL; Chen X; Dai X; Fang Z; Xue QK; Ma X; Wang Y
    Phys Rev Lett; 2012 Jan; 108(3):036805. PubMed ID: 22400773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-scale solution-phase growth of Cu-doped ZnO nanowire networks.
    Xu C; Koo TW; Kim BS; Lee JH; Hwang SW; Whang D
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6062-6. PubMed ID: 22121658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Localization/Quasi-delocalization transitions and quasi-mobility-edges in shell-doped nanowires.
    Zhong J; Stocks GM
    Nano Lett; 2006 Jan; 6(1):128-32. PubMed ID: 16402800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity.
    Zhou C; Zhang XT; Zheng K; Chen PP; Lu W; Zou J
    Nano Lett; 2017 Dec; 17(12):7824-7830. PubMed ID: 29112426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature.
    Kim H; Lee WJ; Farrell AC; Morales JSD; Senanayake P; Prikhodko SV; Ochalski TJ; Huffaker DL
    Nano Lett; 2017 Jun; 17(6):3465-3470. PubMed ID: 28535069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manipulating the quantum interference effect and magnetotransport of ZnO nanowires through interfacial doping.
    Zhao S; Wu Y; Zhang K; Ding H; Du D; Zhao J; Pan N; Wang X
    Nanoscale; 2017 Nov; 9(44):17610-17616. PubMed ID: 29114687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. n-type doping and morphology of GaAs nanowires in Aerotaxy.
    Metaferia W; Sivakumar S; Persson AR; Geijselaers I; Wallenberg LR; Deppert K; Samuelson L; Magnusson MH
    Nanotechnology; 2018 Jul; 29(28):285601. PubMed ID: 29664421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.
    Glynn C; McNulty D; Geaney H; O'Dwyer C
    Small; 2016 Nov; 12(43):5954-5962. PubMed ID: 27622769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Giant, level-dependent g factors in InSb nanowire quantum dots.
    Nilsson HA; Caroff P; Thelander C; Larsson M; Wagner JB; Wernersson LE; Samuelson L; Xu HQ
    Nano Lett; 2009 Sep; 9(9):3151-6. PubMed ID: 19736971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires.
    Kim Y; Joyce HJ; Gao Q; Tan HH; Jagadish C; Paladugu M; Zou J; Suvorova AA
    Nano Lett; 2006 Apr; 6(4):599-604. PubMed ID: 16608251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.