BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 32315264)

  • 1. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of diffusion kurtosis and diffusivity from baseline staging MRI as predictive biomarkers for response to neoadjuvant chemoradiation in locally advanced rectal cancer.
    Bates DDB; Mazaheri Y; Lobaugh S; Golia Pernicka JS; Paroder V; Shia J; Zheng J; Capanu M; Petkovska I; Gollub MJ
    Abdom Radiol (NY); 2019 Nov; 44(11):3701-3708. PubMed ID: 31154482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy.
    Lian S; Liu H; Meng T; Ma L; Zeng W; Xie C
    Eur Radiol; 2023 Mar; 33(3):1737-1745. PubMed ID: 36380196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI.
    Zou HH; Yu J; Wei Y; Wu JF; Xu Q
    J Magn Reson Imaging; 2019 Mar; 49(3):885-893. PubMed ID: 30079601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer].
    Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy.
    Iannicelli E; Di Pietropaolo M; Pilozzi E; Osti MF; Valentino M; Masoni L; Ferri M
    Abdom Radiol (NY); 2016 Oct; 41(10):1906-17. PubMed ID: 27323759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer.
    Choi MH; Oh SN; Rha SE; Choi JI; Lee SH; Jang HS; Kim JG; Grimm R; Son Y
    J Magn Reson Imaging; 2016 Jul; 44(1):212-20. PubMed ID: 26666560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among Standardized Index of Shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters.
    Fusco R; Sansone M; Granata V; Grimm R; Pace U; Delrio P; Tatangelo F; Botti G; Avallone A; Pecori B; Petrillo A
    Abdom Radiol (NY); 2019 Nov; 44(11):3683-3700. PubMed ID: 30361867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer.
    Yang L; Xia C; Zhao J; Zhou X; Wu B
    Eur J Radiol; 2021 Mar; 136():109504. PubMed ID: 33421885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of diffusion-weighted magnetic resonance imaging at 3.0T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy.
    Delli Pizzi A; Cianci R; Genovesi D; Esposito G; Timpani M; Tavoletta A; Pulsone P; Basilico R; Gabrielli D; Rosa C; Caravatta L; Di Tommaso M; Caulo M; Filippone A
    Abdom Radiol (NY); 2018 Sep; 43(9):2221-2230. PubMed ID: 29332248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dynamic perfusion magnetic resonance imaging in patients with local advanced rectal cancer.
    Ippolito D; Drago SG; Pecorelli A; Maino C; Querques G; Mariani I; Franzesi CT; Sironi S
    World J Gastroenterol; 2020 May; 26(20):2657-2668. PubMed ID: 32523318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 16. The Conversion of MRI Data With Multiple b-Values into Signature-Like Pictures to Predict Treatment Response for Rectal Cancer.
    Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS
    J Magn Reson Imaging; 2022 Aug; 56(2):562-569. PubMed ID: 34913210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.
    Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D
    Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer.
    Kim S; Han K; Seo N; Kim HJ; Kim MJ; Koom WS; Ahn JB; Lim JS
    Eur Radiol; 2018 Dec; 28(12):5231-5240. PubMed ID: 29858637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images.
    Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X
    Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
    Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I
    Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.