BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32315392)

  • 1. LeafCutterMD: an algorithm for outlier splicing detection in rare diseases.
    Jenkinson G; Li YI; Basu S; Cousin MA; Oliver GR; Klee EW
    Bioinformatics; 2020 Nov; 36(17):4609-4615. PubMed ID: 32315392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SplicingCompass: differential splicing detection using RNA-seq data.
    Aschoff M; Hotz-Wagenblatt A; Glatting KH; Fischer M; Eils R; König R
    Bioinformatics; 2013 May; 29(9):1141-8. PubMed ID: 23449093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.
    Shi Y; Chinnaiyan AM; Jiang H
    Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data.
    Brechtmann F; Mertes C; Matusevičiūtė A; Yépez VA; Avsec Ž; Herzog M; Bader DM; Prokisch H; Gagneur J
    Am J Hum Genet; 2018 Dec; 103(6):907-917. PubMed ID: 30503520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADFinder: accurate detection of programmed DNA elimination using NGS high-throughput sequencing data.
    Zheng W; Chen J; Doak TG; Song W; Yan Y
    Bioinformatics; 2020 Jun; 36(12):3632-3636. PubMed ID: 32246828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BPP: a sequence-based algorithm for branch point prediction.
    Zhang Q; Fan X; Wang Y; Sun MA; Shao J; Guo D
    Bioinformatics; 2017 Oct; 33(20):3166-3172. PubMed ID: 28633445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNPlice: variants that modulate Intron retention from RNA-sequencing data.
    Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A
    Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index.
    Scheller IF; Lutz K; Mertes C; Yépez VA; Gagneur J
    Am J Hum Genet; 2023 Dec; 110(12):2056-2067. PubMed ID: 38006880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outlier detection for improved differential splicing quantification from RNA-Seq experiments with replicates.
    Norton SS; Vaquero-Garcia J; Lahens NF; Grant GR; Barash Y
    Bioinformatics; 2018 May; 34(9):1488-1497. PubMed ID: 29236961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
    Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of alternative splicing in time course data using Spycone.
    Lio CT; Grabert G; Louadi Z; Fenn A; Baumbach J; Kacprowski T; List M; Tsoy O
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36579860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snaptron: querying splicing patterns across tens of thousands of RNA-seq samples.
    Wilks C; Gaddipati P; Nellore A; Langmead B
    Bioinformatics; 2018 Jan; 34(1):114-116. PubMed ID: 28968689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAGE2: parallel human genome assembly.
    Molnar M; Haghshenas E; Ilie L
    Bioinformatics; 2018 Feb; 34(4):678-680. PubMed ID: 29045591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and powerful detection of subtle allelic imbalance from exome sequencing data with hapLOHseq.
    San Lucas FA; Sivakumar S; Vattathil S; Fowler J; Vilar E; Scheet P
    Bioinformatics; 2016 Oct; 32(19):3015-7. PubMed ID: 27288500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Developments and Possibilities in Reanalysis and Reinterpretation of Whole Exome Sequencing Datasets for Unsolved Rare Diseases Using Machine Learning Approaches.
    Setty ST; Scott-Boyer MP; Cuppens T; Droit A
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease.
    Gonorazky HD; Naumenko S; Ramani AK; Nelakuditi V; Mashouri P; Wang P; Kao D; Ohri K; Viththiyapaskaran S; Tarnopolsky MA; Mathews KD; Moore SA; Osorio AN; Villanova D; Kemaladewi DU; Cohn RD; Brudno M; Dowling JJ
    Am J Hum Genet; 2019 Mar; 104(3):466-483. PubMed ID: 30827497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. circtools-a one-stop software solution for circular RNA research.
    Jakobi T; Uvarovskii A; Dieterich C
    Bioinformatics; 2019 Jul; 35(13):2326-2328. PubMed ID: 30462173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying disease-associated SNP clusters via contiguous outlier detection.
    Yang C; Zhou X; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2011 Sep; 27(18):2578-85. PubMed ID: 21784794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. smallWig: parallel compression of RNA-seq WIG files.
    Wang Z; Weissman T; Milenkovic O
    Bioinformatics; 2016 Jan; 32(2):173-80. PubMed ID: 26424856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.