BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32315625)

  • 1. Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors.
    Grivennikova VG; Gladyshev GV; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148207. PubMed ID: 32315625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles.
    Galkin AS; Grivennikova VG; Vinogradov AD
    Biochemistry (Mosc); 2001 Apr; 66(4):435-43. PubMed ID: 11403652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I).
    Chen X; Qi F; Dash RK; Beard DA
    Biophys J; 2010 Sep; 99(5):1426-36. PubMed ID: 20816054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition.
    Loskovich MV; Grivennikova VG; Cecchini G; Vinogradov AD
    Biochem J; 2005 May; 387(Pt 3):677-83. PubMed ID: 15571492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches.
    Murai M
    Biosci Biotechnol Biochem; 2020 Jul; 84(7):1322-1331. PubMed ID: 32264779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I.
    Masuya T; Okuda K; Murai M; Miyoshi H
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1464-9. PubMed ID: 27140857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submitochondrial fragments of brain mitochondria: general characteristics and catalytic properties of NADH:ubiquinone oxidoreductase (complex I).
    Kalashnikov DS; Grivennikova VG; Vinogradov AD
    Biochemistry (Mosc); 2011 Feb; 76(2):209-16. PubMed ID: 21568854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.
    Grivennikova VG; Serebryanaya DV; Isakova EP; Belozerskaya TA; Vinogradov AD
    Biochem J; 2003 Feb; 369(Pt 3):619-26. PubMed ID: 12379145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?
    Sherwood S; Hirst J
    Biochem J; 2006 Dec; 400(3):541-50. PubMed ID: 16895522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I).
    Vinogradov AD
    Biochim Biophys Acta; 2008; 1777(7-8):729-34. PubMed ID: 18471432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition.
    Grivennikova VG; Kapustin AN; Vinogradov AD
    J Biol Chem; 2001 Mar; 276(12):9038-44. PubMed ID: 11124957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications.
    Wikström M; Hummer G
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4431-6. PubMed ID: 22392981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography and chemical reactivity of the active-inactive transition-sensitive SH-group in the mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
    Gostimskaya IS; Cecchini G; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(9-10):1155-61. PubMed ID: 16777054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H; Miyoshi H; Ebisui K; Iwamura H
    Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.