These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 32315755)

  • 1. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA.
    Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P
    Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F; Koncz M; Eilers RE; Verschure PJ; Rots MG
    Methods Mol Biol; 2024; 2842():289-307. PubMed ID: 39012602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects.
    Rajanathadurai J; Perumal E; Sindya J
    Funct Integr Genomics; 2024 Sep; 24(5):164. PubMed ID: 39292321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing.
    Moses C; Hodgetts SI; Nugent F; Ben-Ary G; Park KK; Blancafort P; Harvey AR
    Sci Rep; 2020 Jul; 10(1):11393. PubMed ID: 32647121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing.
    Li K; Liu Y; Cao H; Zhang Y; Gu Z; Liu X; Yu A; Kaphle P; Dickerson KE; Ni M; Xu J
    Nat Commun; 2020 Jan; 11(1):485. PubMed ID: 31980609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH; Suh Y
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM; Machlin L; Dalal N; Lee RE; McDowell I; Shah NN; Drowley L; Randell SH; Reddy TE
    J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
    Rajaram N; Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2024; 2842():179-192. PubMed ID: 39012596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting RLIP with CRISPR/Cas9 controls tumor growth.
    Singhal J; Chikara S; Horne D; Awasthi S; Salgia R; Singhal SS
    Carcinogenesis; 2021 Feb; 42(1):48-57. PubMed ID: 32426802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 17. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptazyme-mediated direct modulation of post-transcriptional sgRNA level for conditional genome editing and gene expression.
    Chen H; Li Y; Du C; Li Y; Zhao J; Zheng X; Mao Q; Xia H
    J Biotechnol; 2018 Dec; 288():23-29. PubMed ID: 30391232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.