BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32315761)

  • 1. Engineering Halomonas bluephagenesis for L-Threonine production.
    Du H; Zhao Y; Wu F; Ouyang P; Chen J; Jiang X; Ye J; Chen GQ
    Metab Eng; 2020 Jul; 60():119-127. PubMed ID: 32315761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).
    Chen Y; Chen XY; Du HT; Zhang X; Ma YM; Chen JC; Ye JW; Jiang XR; Chen GQ
    Metab Eng; 2019 Jul; 54():69-82. PubMed ID: 30914380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch.
    Lin Y; Guan Y; Dong X; Ma Y; Wang X; Leng Y; Wu F; Ye JW; Chen GQ
    Metab Eng; 2021 Mar; 64():134-145. PubMed ID: 33577951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine.
    Ma H; Zhao Y; Huang W; Zhang L; Wu F; Ye J; Chen GQ
    Nat Commun; 2020 Jul; 11(1):3313. PubMed ID: 32620759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yu LP; Yan X; Zhang X; Chen XB; Wu Q; Jiang XR; Chen GQ
    Metab Eng; 2020 May; 59():119-130. PubMed ID: 32119929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectoine hyperproduction by engineered Halomonas bluephagenesis.
    Hu Q; Sun S; Zhang Z; Liu W; Yi X; He H; Scrutton NS; Chen GQ
    Metab Eng; 2024 Mar; 82():238-249. PubMed ID: 38401747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production.
    Ren Y; Ling C; Hajnal I; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4499-4510. PubMed ID: 29623388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming Halomonas for industrial production of chemicals.
    Chen X; Yu L; Qiao G; Chen GQ
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):545-554. PubMed ID: 29948194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Halomonas bluephagenesis for production of five carbon molecular chemicals derived from L-lysine.
    Yang F; Wang H; Zhao C; Zhang L; Liu X; Park H; Yuan Y; Ye JW; Wu Q; Chen GQ
    Metab Eng; 2024 Jan; 81():227-237. PubMed ID: 38072357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-production of biofuel, bioplastics and biochemicals during extended fermentation of Halomonas bluephagenesis.
    Park H; Toogood HS; Chen GQ; Scrutton NS
    Microb Biotechnol; 2023 Feb; 16(2):307-321. PubMed ID: 36353812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halomonas and Pathway Engineering for Bioplastics Production.
    Xiao-Ran J; Jin Y; Xiangbin C; Guo-Qiang C
    Methods Enzymol; 2018; 608():309-328. PubMed ID: 30173767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Halomonas bluephagenesis for high-level mevalonate production from glucose and acetate mixture.
    Zhang J; Yuan Y; Wang Z; Chen T
    Metab Eng; 2023 Sep; 79():203-213. PubMed ID: 37657641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis.
    Jiang XR; Yan X; Yu LP; Liu XY; Chen GQ
    Nat Commun; 2021 Mar; 12(1):1513. PubMed ID: 33686068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.
    Ye J; Hu D; Che X; Jiang X; Li T; Chen J; Zhang HM; Chen GQ
    Metab Eng; 2018 May; 47():143-152. PubMed ID: 29551476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halomonas spp., as chassis for low-cost production of chemicals.
    Chen GQ; Zhang X; Liu X; Huang W; Xie Z; Han J; Xu T; Mitra R; Zhou C; Zhang J; Chen T
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6977-6992. PubMed ID: 36205763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution.
    Zhang L; Lin Y; Yi X; Huang W; Hu Q; Zhang Z; Wu F; Ye JW; Chen GQ
    Metab Eng; 2023 Sep; 79():146-158. PubMed ID: 37543135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas.
    Ye J; Hu D; Yin J; Huang W; Xiang R; Zhang L; Wang X; Han J; Chen GQ
    Metab Eng; 2020 Jan; 57():85-95. PubMed ID: 31678427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux optimization using multiple promoters in Halomonas bluephagenesis as a model chassis of the next generation industrial biotechnology.
    Ma Y; Ye JW; Lin Y; Yi X; Wang X; Wang H; Huang R; Wu F; Wu Q; Liu X; Chen GQ
    Metab Eng; 2024 Jan; 81():249-261. PubMed ID: 38159902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Catalysis of Citrate to Itaconate by Engineered
    Zhang J; Jin B; Hong K; Lv Y; Wang Z; Chen T
    ACS Synth Biol; 2021 Nov; 10(11):3017-3027. PubMed ID: 34704752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.