These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32315844)

  • 1. Hydropower dam operation strongly controls Lake Victoria's freshwater storage variability.
    Getirana A; Jung HC; Van Den Hoek J; Ndehedehe CE
    Sci Total Environ; 2020 Jul; 726():138343. PubMed ID: 32315844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators.
    Ndehedehe CE; Ferreira VG; Onojeghuo AO; Agutu NO; Emengini E; Getirana A
    Sci Total Environ; 2020 Oct; 737():139643. PubMed ID: 32512298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016.
    Khaki M; Awange J; Forootan E; Kuhn M
    Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.
    Yang P; Xia J; Zhan C; Qiao Y; Wang Y
    Sci Total Environ; 2017 Oct; 595():218-228. PubMed ID: 28384578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved remotely sensed satellite products for studying Lake Victoria's water storage changes.
    Khaki M; Awange J
    Sci Total Environ; 2019 Feb; 652():915-926. PubMed ID: 30586834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 2019-2020 Rise in Lake Victoria Monitored from Space: Exploiting the State-of-the-Art GRACE-FO and the Newly Released ERA-5 Reanalysis Products.
    Khaki M; Awange J
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products.
    Anyah RO; Forootan E; Awange JL; Khaki M
    Sci Total Environ; 2018 Sep; 635():1405-1416. PubMed ID: 29710593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data.
    Jiao JJ; Zhang X; Liu Y; Kuang X
    PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data.
    Rateb A; Scanlon BR; Kuo CY
    Sci Total Environ; 2021 Apr; 766():144337. PubMed ID: 33421786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products.
    Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R
    Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of multi-mission satellite data assimilation for studying water storage changes over South America.
    Khaki M; Awange J
    Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations.
    Khorrami B; Gündüz O
    Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California.
    Carlson G; Werth S; Shirzaei M
    J Geophys Res Solid Earth; 2022 Mar; 127(3):e2021JB023135. PubMed ID: 35866034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data.
    Chao N; Chen G; Luo Z; Su X; Wang Z; Li F
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System.
    Gonçalves RD; Stollberg R; Weiss H; Chang HK
    Sci Total Environ; 2020 Feb; 705():135845. PubMed ID: 31972920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations.
    Chen H; Zhang W; Nie N; Guo Y
    Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of Bangladesh's sub-surface water storages using satellite products and data assimilation scheme.
    Khaki M; Forootan E; Kuhn M; Awange J; Papa F; Shum CK
    Sci Total Environ; 2018 Jun; 625():963-977. PubMed ID: 29306834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term trends in Africa's freshwater resources: Rates and drivers.
    Ahmed M; Wiese DN
    Sci Total Environ; 2019 Dec; 695():133843. PubMed ID: 31421343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing terrestrial water storage dynamics and multiple factors driving forces in China from 2005 to 2020.
    Ji R; Wang C; Cui A; Jia M; Liao S; Wang W; Chen N
    J Environ Manage; 2024 Nov; 370():122464. PubMed ID: 39265495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.