These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32315844)
21. Monitoring terrestrial water storage changes using GNSS vertical coordinate time series in Amazon River basin. Liu Y; Xu K; Guo Z; Li S; Zhu Y Sci Rep; 2024 Oct; 14(1):24077. PubMed ID: 39402121 [TBL] [Abstract][Full Text] [Related]
22. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China. Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033 [TBL] [Abstract][Full Text] [Related]
23. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO. Fatolazadeh F; Goïta K Sci Total Environ; 2021 Jul; 779():146435. PubMed ID: 34030259 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of GRACE mascon solutions using in-situ geodetic data: The case of hydrologic-induced crust displacement in the Yangtze River Basin. Wang L; Chen C; Ma X; Fu Z; Zheng Y; Peng Z Sci Total Environ; 2020 Mar; 707():135606. PubMed ID: 31780149 [TBL] [Abstract][Full Text] [Related]
25. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods. Rateb A; Kuo CY; Imani M; Tseng KH; Lan WH; Ching KE; Tseng TP Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287453 [TBL] [Abstract][Full Text] [Related]
26. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Scanlon BR; Zhang Z; Save H; Sun AY; Müller Schmied H; van Beek LPH; Wiese DN; Wada Y; Long D; Reedy RC; Longuevergne L; Döll P; Bierkens MFP Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1080-E1089. PubMed ID: 29358394 [TBL] [Abstract][Full Text] [Related]
27. Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network. Lai Y; Zhang B; Yao Y; Liu L; Yan X; He Y; Ou S Sci Total Environ; 2022 Jun; 823():153770. PubMed ID: 35151739 [TBL] [Abstract][Full Text] [Related]
28. Response of deep aquifers to climate variability. Abdelmohsen K; Sultan M; Ahmed M; Save H; Elkaliouby B; Emil M; Yan E; Abotalib AZ; Krishnamurthy RV; Abdelmalik K Sci Total Environ; 2019 Aug; 677():530-544. PubMed ID: 31067476 [TBL] [Abstract][Full Text] [Related]
29. Tracking the water storage and runoff variations in the Paraná basin via GNSS measurements. Qiu K; You W; Jiang Z; Tang M Sci Total Environ; 2024 Feb; 912():168831. PubMed ID: 38061646 [TBL] [Abstract][Full Text] [Related]
30. Terrestrial water storage regime and its change in the endorheic Tibetan Plateau. Wang L; Wang J; Wang L; Zhu L; Li X Sci Total Environ; 2022 Apr; 815():152729. PubMed ID: 34998774 [TBL] [Abstract][Full Text] [Related]
31. Altimetry-derived surface water data assimilation over the Nile Basin. Khaki M; Awange J Sci Total Environ; 2020 Sep; 735():139008. PubMed ID: 32485444 [TBL] [Abstract][Full Text] [Related]
32. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin. Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709 [TBL] [Abstract][Full Text] [Related]
33. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Do P; Tian F; Zhu T; Zohidov B; Ni G; Lu H; Liu H Sci Total Environ; 2020 Aug; 728():137996. PubMed ID: 32570321 [TBL] [Abstract][Full Text] [Related]
34. Using Satellite-Based Terrestrial Water Storage Data: A Review. Humphrey V; Rodell M; Eicker A Surv Geophys; 2023; 44(5):1489-1517. PubMed ID: 37771629 [TBL] [Abstract][Full Text] [Related]
35. Detection of extreme hydrological droughts in the poyang lake basin during 2021-2022 using GNSS-derived daily terrestrial water storage anomalies. Peng Y; Chen G; Chao N; Wang Z; Wu T; Luo X Sci Total Environ; 2024 Apr; 919():170875. PubMed ID: 38360307 [TBL] [Abstract][Full Text] [Related]
36. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States. Yi H; Wen L Sci Rep; 2016 Jan; 6():19909. PubMed ID: 26813800 [TBL] [Abstract][Full Text] [Related]
37. Global warming impact to River Basin of Blue Nile and the optimum operation of its multi-reservoir system for hydropower production and irrigation. Tariku TB; Gan KE; Tan X; Gan TY; Shi H; Tilmant A Sci Total Environ; 2021 May; 767():144863. PubMed ID: 33450592 [TBL] [Abstract][Full Text] [Related]
38. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617 [TBL] [Abstract][Full Text] [Related]
39. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India. Girotto M; De Lannoy GJM; Reichle RH; Rodell M; Draper C; Bhanja SN; Mukherjee A Geophys Res Lett; 2017 May; 44(9):4107-4115. PubMed ID: 29643570 [TBL] [Abstract][Full Text] [Related]
40. Using a hierarchical model framework to assess climate change and hydropower operation impacts on the habitat of an imperiled fish in the Jinsha River, China. Zhang P; Qiao Y; Schineider M; Chang J; Mutzner R; Fluixá-Sanmartín J; Yang Z; Fu R; Chen X; Cai L; Lu J Sci Total Environ; 2019 Jan; 646():1624-1638. PubMed ID: 30235646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]