These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 3231591)
1. In vitro availability of iron and zinc in white and coloured ragi (Eleusine coracana): role of tannin and phytate. Udayasekhara Rao P; Deosthale YG Plant Foods Hum Nutr; 1988; 38(1):35-41. PubMed ID: 3231591 [TBL] [Abstract][Full Text] [Related]
2. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains. Wu G; Johnson SK; Bornman JF; Bennett SJ; Singh V; Simic A; Fang Z PLoS One; 2016; 11(2):e0148712. PubMed ID: 26859483 [TBL] [Abstract][Full Text] [Related]
3. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Wu G; Ashton J; Simic A; Fang Z; Johnson SK Food Res Int; 2018 Jan; 103():509-514. PubMed ID: 29389641 [TBL] [Abstract][Full Text] [Related]
4. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. Lestienne I; Besançon P; Caporiccio B; Lullien-Péllerin V; Tréche S J Agric Food Chem; 2005 Apr; 53(8):3240-7. PubMed ID: 15826084 [TBL] [Abstract][Full Text] [Related]
5. Relationship between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana Gaertn.). Ramachandra G; Virupaksha TK; Shadaksharaswamy M J Agric Food Chem; 1977; 25(5):1101-4. PubMed ID: 893835 [No Abstract] [Full Text] [Related]
6. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. Afify Ael-M; El-Beltagi HS; El-Salam SM; Omran AA PLoS One; 2011; 6(10):e25512. PubMed ID: 22003395 [TBL] [Abstract][Full Text] [Related]
7. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Sandberg AS Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732 [TBL] [Abstract][Full Text] [Related]
8. Traditional fermentation of tef injera: Impact on in vitro iron and zinc dialysability. Shumoy H; Lauwens S; Gabaza M; Vandevelde J; Vanhaecke F; Raes K Food Res Int; 2017 Dec; 102():93-100. PubMed ID: 29196017 [TBL] [Abstract][Full Text] [Related]
9. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
10. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Lemmens E; De Brier N; Spiers KM; Ryan C; Garrevoet J; Falkenberg G; Goos P; Smolders E; Delcour JA Food Chem; 2018 Oct; 264():367-376. PubMed ID: 29853389 [TBL] [Abstract][Full Text] [Related]
11. Tannin content of sorghum varieties and their role in iron bioavailability. Radhakrishnan MR; Sivaprasad J J Agric Food Chem; 1980; 28(1):55-7. PubMed ID: 7358935 [No Abstract] [Full Text] [Related]
12. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Makokha AO; Oniang'o RK; Njoroge SM; Kamar OK Food Nutr Bull; 2002 Sep; 23(3 Suppl):241-5. PubMed ID: 12362804 [TBL] [Abstract][Full Text] [Related]
13. Protein quality in cereals and pulses. 1. Application of microbiological and other in vitro methods in the evaluation of rice (Oryza sativa L.), sorghum (Sorghum vulgare Pers.), barley and field beans (Vicia faba L.). Ford JE; Hewitt D Br J Nutr; 1979 Mar; 41(2):341-52. PubMed ID: 427087 [TBL] [Abstract][Full Text] [Related]
14. Nutrient composition and protein quality of minor millets. Geervani P; Eggum BO Plant Foods Hum Nutr; 1989 Jun; 39(2):201-8. PubMed ID: 2548175 [TBL] [Abstract][Full Text] [Related]
15. Oxidation of polyphenols in phytate-reduced high-tannin cereals: effect on different phenolic groups and on in vitro accessible iron. Matuschek E; Towo E; Svanberg U J Agric Food Chem; 2001 Nov; 49(11):5630-8. PubMed ID: 11714370 [TBL] [Abstract][Full Text] [Related]
16. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Gibson RS; Bailey KB; Gibbs M; Ferguson EL Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598 [TBL] [Abstract][Full Text] [Related]
17. [Antiphysiological and nutritional factor changes in sorghum (Sorghum bicolor (L.) Moench) seeds during germination]. Alvarez Venegas R; Castellanos Molina R; Martínez Bustos F; Cruz Mondragón C Arch Latinoam Nutr; 1997 Jun; 47(2):136-40. PubMed ID: 9659428 [TBL] [Abstract][Full Text] [Related]
18. Influence of combinations of promoter and inhibitor on the bioaccessibility of iron and zinc from food grains. Gautam S; Platel K; Srinivasan K Int J Food Sci Nutr; 2011 Dec; 62(8):826-34. PubMed ID: 21619459 [TBL] [Abstract][Full Text] [Related]
19. Effect of fermentation on nutrient composition, antinutrients, and mineral bioaccessibility of finger millet based Injera: A traditional Ethiopian food. Endalew HW; Atlabachew M; Karavoltsos S; Sakellari A; Aslam MF; Allen L; Griffiths H; Zoumpoulakis P; Kanellou A; Yehuala TF; Abera MK; Tenagashaw MW; Cherie HA Food Res Int; 2024 Aug; 190():114635. PubMed ID: 38945624 [TBL] [Abstract][Full Text] [Related]
20. Potential contribution of African green leafy vegetables and maize porridge composite meals to iron and zinc nutrition. Kruger J; Mongwaketse T; Faber M; van der Hoeven M; Smuts CM Nutrition; 2015 Sep; 31(9):1117-23. PubMed ID: 26233869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]