These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32315993)

  • 21. Skin-Deep Aspect of Thermopower in Bi
    Lee C; Park T; Shim JH; Whangbo MH
    Acc Chem Res; 2022 Oct; 55(19):2811-2820. PubMed ID: 36129235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Prediction of Thermoelectric Performance for Layered LaAgOX (X = S, Se) Materials in Consideration of the Four-Phonon and Multiple Carrier Scattering Processes.
    Bai S; Zhang J; Wu M; Luo D; Wan D; Li X; Tang S
    Small Methods; 2023 Mar; 7(3):e2201368. PubMed ID: 36642805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing.
    Yan Y; Geng W; Qiu J; Ke H; Luo C; Yang J; Uher C; Tang X
    RSC Adv; 2018 Apr; 8(28):15796-15803. PubMed ID: 35539494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Thermoelectric Performance of Zr
    Yang X; Jiang Z; Kang H; Chen Z; Guo E; Liu D; Yang F; Li R; Jiang X; Wang T
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3773-3783. PubMed ID: 31880427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigations on the thermoelectric and thermodynamic properties of Y
    Wang L; Chang WL; Sun ZQ; Zhang ZM
    RSC Adv; 2022 May; 12(23):14377-14383. PubMed ID: 35702233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superior thermoelectric properties of ternary chalcogenides CsAg
    Jong UG; Kang CJ; Kim SY; Kim HC; Yu CJ
    Phys Chem Chem Phys; 2022 Mar; 24(9):5729-5737. PubMed ID: 35188508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca).
    Sun HL; Yang CL; Wang MS; Ma XG
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5838-5846. PubMed ID: 31922710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX(X = Se, Te).
    Jia K; Yang CL; Wang MS; Ma XG; Yi YG
    J Phys Condens Matter; 2021 Mar; 33(9):095501. PubMed ID: 33207328
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Meghoufel ZF; Cherifi F; Boukra A; Terki F
    J Phys Condens Matter; 2021 Jul; 33(39):. PubMed ID: 34229317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quadruple-layer group-IV tellurides: low thermal conductivity and high performance two-dimensional thermoelectric materials.
    Wei QL; Zhu XL; Liu PF; Wu YY; Ma JJ; Liu YB; Li YH; Wang BT
    Phys Chem Chem Phys; 2021 Mar; 23(11):6388-6396. PubMed ID: 33704316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-principles prediction of structural stability and thermoelectric properties of SrGaSnH.
    Haque E; Rahaman M
    RSC Adv; 2021 Jan; 11(6):3304-3314. PubMed ID: 35424316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically high thermoelectric figure of merit of half-Heusler ZrRuTe.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32544886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-principles predictions of low lattice thermal conductivity and high thermoelectric performance of AZnSb (A = Rb, Cs).
    Haque E
    RSC Adv; 2021 Apr; 11(25):15486-15496. PubMed ID: 35424042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the Thermoelectric Properties of BaTiS
    Paudel TR; Tsymbal EY
    ACS Omega; 2020 Jun; 5(21):12385-12390. PubMed ID: 32548422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-low thermal conductivity and high thermoelectric performance of monolayer BiP
    Wu YY; Wei Q; Zou J; Yang H
    Phys Chem Chem Phys; 2021 Sep; 23(35):19834-19840. PubMed ID: 34525134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoelectric properties of (Ba,K)Cd
    Kunioka H; Kihou K; Nishiate H; Yamamoto A; Usui H; Kuroki K; Lee CH
    Dalton Trans; 2018 Nov; 47(45):16205-16210. PubMed ID: 30387487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities.
    Lin YQ; Yang Q; Wang ZQ; Geng HY; Cheng Y
    Phys Chem Chem Phys; 2023 Nov; 25(45):31312-31325. PubMed ID: 37955953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of Sn doping on thermoelectric performance of n-type half-Heusler NbCoSb.
    Huang L; Zhang Q; Wang Y; He R; Shuai J; Zhang J; Wang C; Ren Z
    Phys Chem Chem Phys; 2017 Sep; 19(37):25683-25690. PubMed ID: 28905945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.