These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32316085)

  • 1. Electromagnetohydrodynamic Electroosmotic Flow and Entropy Generation of Third-Grade Fluids in a Parallel Microchannel.
    Yang C; Jian Y; Xie Z; Li F
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32316085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of MHD and porosity on entropy generation in two incompressible Newtonian fluids over a thin needle in a parallel free stream.
    Ali F; Imtiaz A; Khan WA; Khan I; Badruddin IA
    Sci Rep; 2020 Dec; 10(1):22305. PubMed ID: 33339833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterial based flow of Prandtl-Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation.
    Khan MI; Khan SA; Hayat T; Khan MI; Alsaedi A
    Comput Methods Programs Biomed; 2019 Oct; 180():105017. PubMed ID: 31425940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Analysis of Entropy Generation Minimization in Thermally Dissipating Flow Over a Thin Needle Moving in a Parallel Free Stream of Two Newtonian Fluids.
    Khan I; Khan WA; Qasim M; Afridi I; Alharbi SO
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation.
    Khan MI; Alsaedi A; Hayat T; Khan NB
    Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Electric Effects on a Non-Isothermal Electroosmotic Flow in a Microcapillary Tube Filled by Two Immiscible Fluids.
    Matías A; Méndez F; Bautista O
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge-dependent slip.
    Li D; Dong J; Li H
    Electrophoresis; 2024 Oct; 45(19-20):1727-1747. PubMed ID: 38809093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of physical aspects of cubic autocatalytic chemically reactive flow of second grade nanomaterial with entropy optimization.
    Alsaadi FE; Hayat T; Khan SA; Alsaadi FE; Khan MI
    Comput Methods Programs Biomed; 2020 Jan; 183():105061. PubMed ID: 31539717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Entropy in Two-Dimensional Peristaltic Flow with Temperature Dependent Viscosity, Thermal and Electrical Conductivity.
    Qasim M; Ali Z; Farooq U; Lu D
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness.
    Ma N; Sun Y; Jian Y
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radially varying viscosity and entropy generation effect on the Newtonian nanofluid flow between two co-axial tubes with peristalsis.
    Sayed HA; Abouzeid MY
    Sci Rep; 2023 Jul; 13(1):11013. PubMed ID: 37419939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasilinearization numerical technique for dual slip MHD Newtonian fluid flow with entropy generation in thermally dissipating flow above a thin needle.
    Khan S; Ali F; Khan WA; Imtiaz A; Khan I; Abdeljawad T
    Sci Rep; 2021 Jul; 11(1):15130. PubMed ID: 34301965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Dynamics of Fractional Maxwell Nano-Fluids Subject to Entropy Generation, Lorentz Force and Heat Source via Finite Difference Scheme.
    Asjad MI; Usman M; Ali A; Awrejcewicz J; Bednarek M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates.
    Buren M; Jian Y
    Electrophoresis; 2015 Jul; 36(14):1539-48. PubMed ID: 25873183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C; Yang C
    Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Analysis of Heat Transfer and Entropy Generation in a Tube Filled with Double-Layer Porous Media.
    Yang K; Huang W; Li X; Wang J
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-field- and thermal-radiation-induced entropy generation in a multiphase nonisothermal plane Poiseuille flow.
    Chaudhuri J
    Phys Rev E; 2021 Dec; 104(6-2):065105. PubMed ID: 35030912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy optimization analysis in MHD nanomaterials (TiO
    Ijaz Khan M; Khan SA; Hayat T; Imran Khan M; Alsaedi A
    Comput Methods Programs Biomed; 2020 Feb; 184():105111. PubMed ID: 31622856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroosmotic Flow Behavior of Viscoelastic LPTT Fluid in a Microchannel.
    Chen D; Li J; Chen H; Zhang L; Zhang H; Ma Y
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31847473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.