These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluation method for acoustic underwater propulsion systems. Kong D; Qian Y; Kurosawa MK; Aoyagi M J Acoust Soc Am; 2021 Aug; 150(2):1157. PubMed ID: 34470274 [TBL] [Abstract][Full Text] [Related]
3. Frequency dependence of surface acoustic wave swimming. Pouya C; Hoggard K; Gossage SH; Peter HR; Poole T; Nash GR J R Soc Interface; 2019 Jun; 16(155):20190113. PubMed ID: 31213171 [TBL] [Abstract][Full Text] [Related]
4. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
5. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Zhou Y Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071 [TBL] [Abstract][Full Text] [Related]
6. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Rogers PR; Friend JR; Yeo LY Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070 [TBL] [Abstract][Full Text] [Related]
7. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945 [TBL] [Abstract][Full Text] [Related]
8. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Collins DJ; Ma Z; Ai Y Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956 [TBL] [Abstract][Full Text] [Related]
9. Directional acoustic underwater thruster. Wang Z; Qiu X; Zhu J; Oiler J; Chen SJ; Shi J; Kim E; Yu H IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1114-7. PubMed ID: 21693390 [TBL] [Abstract][Full Text] [Related]
10. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Ren L; Wang W; Mallouk TE Acc Chem Res; 2018 Sep; 51(9):1948-1956. PubMed ID: 30079719 [TBL] [Abstract][Full Text] [Related]
11. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
12. Virtual membrane for filtration of particles using surface acoustic waves (SAW). Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086 [TBL] [Abstract][Full Text] [Related]
13. Frequency effects on the scale and behavior of acoustic streaming. Dentry MB; Yeo LY; Friend JR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013203. PubMed ID: 24580352 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics. Zhang N; Friend J J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998 [TBL] [Abstract][Full Text] [Related]
15. Swimming using surface acoustic waves. Bourquin Y; Cooper JM PLoS One; 2013; 8(2):e42686. PubMed ID: 23431358 [TBL] [Abstract][Full Text] [Related]
16. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Mei J; Zhang N; Friend J J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169 [TBL] [Abstract][Full Text] [Related]
18. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
19. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration. Zhou Y; Ma Z; Ai Y Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949 [TBL] [Abstract][Full Text] [Related]
20. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Feng J; Yuan J; Cho SK Lab Chip; 2015 Mar; 15(6):1554-62. PubMed ID: 25650274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]