These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32316430)
1. Prediction of Binding Stability of Pu(IV) and PuO Jeong K; Jeong HJ; Woo SM; Bae S Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316430 [TBL] [Abstract][Full Text] [Related]
2. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations. Wu QY; Lan JH; Wang CZ; Zhao YL; Chai ZF; Shi WQ J Phys Chem A; 2014 Nov; 118(44):10273-80. PubMed ID: 25302669 [TBL] [Abstract][Full Text] [Related]
3. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Shaughnessy DA; Nitsche H; Booth CH; Shuh DK; Waychunas GA; Wilson RE; Gill H; Cantrell KJ; Serne RJ Environ Sci Technol; 2003 Aug; 37(15):3367-74. PubMed ID: 12966983 [TBL] [Abstract][Full Text] [Related]
4. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Xiao CL; Wu QY; Wang CZ; Zhao YL; Chai ZF; Shi WQ Inorg Chem; 2014 Oct; 53(20):10846-53. PubMed ID: 25268674 [TBL] [Abstract][Full Text] [Related]
5. A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. Lan JH; Wang CZ; Wu QY; Wang SA; Feng YX; Zhao YL; Chai ZF; Shi WQ J Phys Chem A; 2015 Aug; 119(34):9178-88. PubMed ID: 26226188 [TBL] [Abstract][Full Text] [Related]
6. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density. Du J; Sun X; Jiang G Int J Mol Sci; 2016 Apr; 17(4):414. PubMed ID: 27077844 [TBL] [Abstract][Full Text] [Related]
7. The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions. Ekberg C; Larsson K; Skarnemark G; Ödegaard-Jensen A; Persson I Dalton Trans; 2013 Feb; 42(6):2035-40. PubMed ID: 23175453 [TBL] [Abstract][Full Text] [Related]
8. Oxidation states, geometries, and electronic structures of plutonium tetroxide PuO4 isomers: is octavalent Pu viable? Huang W; Xu WH; Su J; Schwarz WH; Li J Inorg Chem; 2013 Dec; 52(24):14237-45. PubMed ID: 24274785 [TBL] [Abstract][Full Text] [Related]
9. Complexation Behavior of the Tri-n-butyl Phosphate Ligand with Pu(IV) and Zr(IV): A Computational Study. Gopakumar G; Sreenivasulu B; Suresh A; Brahmmananda Rao CV; Sivaraman N; Joseph M; Anoop A J Phys Chem A; 2016 Jun; 120(24):4201-10. PubMed ID: 27248966 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Powell BA; Dai Z; Zavarin M; Zhao P; Kersting AB Environ Sci Technol; 2011 Apr; 45(7):2698-703. PubMed ID: 21446768 [TBL] [Abstract][Full Text] [Related]
11. First-Principles Study of Nitrogen Adsorption and Dissociation on PuH Wang C; Zhang K; Song P; Hu X; Mu J; Miao Z; Zhou J; He H Molecules; 2020 Apr; 25(8):. PubMed ID: 32325911 [TBL] [Abstract][Full Text] [Related]
12. Investigations on preferential Pu(IV) extraction over U(VI) by N,N-dihexyloctanamide versus tri-n-butyl phosphate: evidence through small angle neutron scattering and DFT studies. Verma PK; Kumari N; Pathak PN; Sadhu B; Sundararajan M; Aswal VK; Mohapatra PK J Phys Chem A; 2014 Jun; 118(22):3996-4004. PubMed ID: 24815040 [TBL] [Abstract][Full Text] [Related]
13. Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu(v/vi). Hixon AE; Powell BA Environ Sci Process Impacts; 2018 Oct; 20(10):1306-1322. PubMed ID: 30251720 [TBL] [Abstract][Full Text] [Related]
14. Plutonium Speciation and Oxidation State Distributions in the Presence of Citrate. Comins MB; Kaplan U; Beam J; Navarrette A; Hixon AE Environ Sci Technol; 2024 Sep; 58(35):15766-15778. PubMed ID: 39163648 [TBL] [Abstract][Full Text] [Related]
15. Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Chen YM; Wang CZ; Wu QY; Lan JH; Chai ZF; Shi WQ Dalton Trans; 2021 Nov; 50(43):15576-15584. PubMed ID: 34667997 [TBL] [Abstract][Full Text] [Related]
16. Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Powell BA; Duff MC; Kaplan DI; Fjeld RA; Newville M; Hunter DB; Bertsch PM; Coates JT; Eng P; Rivers ML; Serkiz SM; Sutton SR; Triay IR; Vaniman DT Environ Sci Technol; 2006 Jun; 40(11):3508-14. PubMed ID: 16786687 [TBL] [Abstract][Full Text] [Related]
17. Controls on soluble Pu concentrations in PuO2/magnetite suspensions. Felmy AR; Moore DA; Pearce CI; Conradson SD; Qafoku O; Buck EC; Rosso KM; Ilton ES Environ Sci Technol; 2012 Nov; 46(21):11610-7. PubMed ID: 23016948 [TBL] [Abstract][Full Text] [Related]
18. Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations. Odoh SO; Bylaska EJ; de Jong WA J Phys Chem A; 2013 Nov; 117(47):12256-67. PubMed ID: 24168210 [TBL] [Abstract][Full Text] [Related]
19. Gas-phase uranyl, neptunyl, and plutonyl: hydration and oxidation studied by experiment and theory. Rios D; Michelini MC; Lucena AF; Marçalo J; Bray TH; Gibson JK Inorg Chem; 2012 Jun; 51(12):6603-14. PubMed ID: 22656318 [TBL] [Abstract][Full Text] [Related]
20. Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. Reilly SD; Neu MP Inorg Chem; 2006 Feb; 45(4):1839-46. PubMed ID: 16472001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]