These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32316446)

  • 1. Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample.
    Kim G; Jeong S; Kang YJ
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood rheometer based on microflow manipulation of continuous blood flows using push-and-back mechanism.
    Kang YJ
    Anal Methods; 2021 Oct; 13(41):4871-4883. PubMed ID: 34586112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.
    Liu HC; Li Y; Chen R; Jung H; Shung KK
    Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensing of Haemorheological Properties Using Microblood Flow Manipulation and Quantification.
    Kang YJ
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field.
    Ma X; Huang B; Wang G; Fu X; Qiu S
    Ultrason Sonochem; 2017 Sep; 38():604-613. PubMed ID: 27590752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform under
    Kang YJ
    Biomicrofluidics; 2018 Mar; 12(2):024116. PubMed ID: 29682144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo effects of Hb solutions on blood viscosity and rheologic behavior of RBCs: comparison with clinically used volume expanders.
    Menu P; Bleeker W; Longrois D; Caron A; Faivre-Fiorina B; Muller S; Labrude P; Stoltz JF
    Transfusion; 2000 Sep; 40(9):1095-103. PubMed ID: 10988313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependency of whole blood viscosity and red cell properties in desert ungulates: Studies on scimitar-horned oryx and dromedary camel.
    Windberger U; Auer R; Plasenzotti R; Eloff S; Skidmore JA
    Clin Hemorheol Microcirc; 2018; 69(4):533-543. PubMed ID: 29710697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow.
    Kaliviotis E; Dusting J; Sherwood JM; Balabani S
    Clin Hemorheol Microcirc; 2015 Sep; 63(2):123-48. PubMed ID: 26444611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Investigation of Air Compliance Effect on Measurement of Mechanical Properties of Blood Sample Flowing in Microfluidic Channels.
    Kang YJ
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel.
    Shin S; Park MS; Ku YH; Suh JS
    Clin Hemorheol Microcirc; 2006; 34(1-2):353-61. PubMed ID: 16543657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.