These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32316446)

  • 21. Increased aggregation with normal surface charge and deformability of red blood cells in children with nephrotic syndrome.
    Böhler T; Linderkamp O; Leo A; Wingen AM; Schärer K
    Clin Nephrol; 1992 Sep; 38(3):119-24. PubMed ID: 1395161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation method of the degree of red blood cell aggregation considering ultrasonic propagation attenuation by analyzing ultrasonic backscattering properties.
    Nagasawa K; Fukase A; Mori S; Arakawa M; Yashiro S; Ishigaki Y; Kanai H
    J Med Ultrason (2001); 2021 Jan; 48(1):3-12. PubMed ID: 33438131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation.
    Qin Z; Durand LG; Cloutier G
    Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythrocyte aggregation: basic aspects and clinical importance.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013; 53(1-2):23-37. PubMed ID: 22975932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of red blood cell aggregation on myocardial hematocrit gradient using two approaches to increase aggregation.
    Yalcin O; Aydin F; Ulker P; Uyuklu M; Gungor F; Armstrong JK; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H765-71. PubMed ID: 16172155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cocaine induces a reversible stomatocytosis of red blood cells and increases blood viscosity.
    Cagienard F; Schulzki T; Furlong P; Reinhart WH
    Clin Hemorheol Microcirc; 2013; 55(3):321-9. PubMed ID: 23076010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis.
    Kang YJ; Ha YR; Lee SJ
    Anal Chem; 2016 Mar; 88(5):2912-22. PubMed ID: 26845250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic scattering measurements of a live single cell at 86 MHz.
    Lee C; Jung H; Lam KH; Yoon C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):1968-78. PubMed ID: 26559626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on-off blood flows supplied from a disposable air-compressed pump.
    Kang YJ
    Analyst; 2019 Jun; 144(11):3556-3566. PubMed ID: 31050348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel.
    Kang YJ
    Anal Methods; 2022 Mar; 14(12):1194-1207. PubMed ID: 35234222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of increased plasma viscosity and red blood cell aggregation on blood viscosity in vivo.
    Gustafsson L; Appelgren L; Myrvold HE
    Am J Physiol; 1981 Oct; 241(4):H513-8. PubMed ID: 6172042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheological and flow properties of blood investigated by ultrasound.
    Boynard M; Haider L; Lardoux H; Snabre P
    Indian J Exp Biol; 2007 Jan; 45(1):18-24. PubMed ID: 17249323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data.
    Windberger U; Bartholovitsch A; Plasenzotti R; Korak KJ; Heinze G
    Exp Physiol; 2003 May; 88(3):431-40. PubMed ID: 12719768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.