BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32316451)

  • 41. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy.
    Zheng M; Zhu X; Chen Y; Xiang Q; Duan H
    Nanotechnology; 2017 Jan; 28(4):045303. PubMed ID: 27981948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface-enhanced Raman scattering with gold-coated silicon nanopillars arrays: The influence of size and spatial order.
    Yue W; Fan Y; Zhang T; Gong T; Long X; Luo Y; Gao P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120582. PubMed ID: 34802929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays.
    Hong KY; Brolo AG
    Anal Chim Acta; 2017 Jun; 972():73-80. PubMed ID: 28495098
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold Film over SiO
    Kouba K; Proška J; Procházka M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31600895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensitive and high laser damage threshold substrates for surface-enhanced Raman scattering based on gold and silver nanoparticles.
    Mayr F; Zimmerleiter R; Farias PMA; Bednorz M; Salinas Y; Galembek A; Cardozo ODF; Wielend D; Oliveira D; Milani R; Brito-Silva TM; Brandstetter M; Padrón-Hernández E; Burgholzer P; Stingl A; Scharber MC; Sariciftci NS
    Anal Sci Adv; 2023 Dec; 4(11-12):335-346. PubMed ID: 38715649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.
    Ionescu RE; Aybeke EN; Bourillot E; Lacroute Y; Lesniewska E; Adam PM; Bijeon JL
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28134754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing.
    Gopinath A; Boriskina SV; Premasiri WR; Ziegler L; Reinhard BM; Dal Negro L
    Nano Lett; 2009 Nov; 9(11):3922-9. PubMed ID: 19754067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications.
    Dieringer JA; McFarland AD; Shah NC; Stuart DA; Whitney AV; Yonzon CR; Young MA; Zhang X; Van Duyne RP
    Faraday Discuss; 2006; 132():9-26. PubMed ID: 16833104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements.
    Fujiwara S; Kawasaki D; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revisiting Surface-Enhanced Raman Scattering on Realistic Lithographic Gold Nanostripes.
    Sow I; Grand J; Lévi G; Aubard J; Félidj N; Tinguely JC; Hohenau A; Krenn JR
    J Phys Chem C Nanomater Interfaces; 2013 Dec; 117(48):25650-25658. PubMed ID: 24340104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy.
    Zhou Y; Li X; Ren X; Yang L; Liu J
    Analyst; 2014 Oct; 139(19):4799-805. PubMed ID: 24975281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dielectric Walls/Layers Modulated 3D Periodically Structured SERS Chips: Design, Batch Fabrication, and Applications.
    Tian Y; Hu H; Chen P; Dong F; Huang H; Xu L; Yan L; Song Z; Xu T; Chu W
    Adv Sci (Weinh); 2022 May; 9(15):e2200647. PubMed ID: 35322577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays.
    Yu Q; Guan P; Qin D; Golden G; Wallace PM
    Nano Lett; 2008 Jul; 8(7):1923-8. PubMed ID: 18563939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2012 Apr; 116(13):7534-7545. PubMed ID: 24839506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array.
    Wu HY; Choi CJ; Cunningham BT
    Small; 2012 Sep; 8(18):2878-85. PubMed ID: 22761112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.