These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 32316547)
41. Role of Dendritic Cell in Diabetic Nephropathy. Kim H; Kim M; Lee HY; Park HY; Jhun H; Kim S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299173 [TBL] [Abstract][Full Text] [Related]
42. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Li J; Li L; Zhang Z; Chen P; Shu H; Yang C; Chu Y; Liu J Front Immunol; 2023; 14():1294317. PubMed ID: 38111578 [TBL] [Abstract][Full Text] [Related]
43. Sex differences in progression of diabetic nephropathy in OVE26 type 1 diabetic mice. Wang W; Jiang S; Tang X; Cai L; Epstein PN; Cheng Y; Sun W; Xu Z; Tan Y Biochim Biophys Acta Mol Basis Dis; 2020 Jan; 1866(1):165589. PubMed ID: 31678163 [TBL] [Abstract][Full Text] [Related]
44. Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation. Sun H; Tian J; Xian W; Xie T; Yang X Inflammation; 2015 Oct; 38(5):1739-47. PubMed ID: 25761429 [TBL] [Abstract][Full Text] [Related]
46. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway. Li Z; Hong Z; Peng Z; Zhao Y; Shao R Hum Cell; 2018 Jul; 31(3):199-209. PubMed ID: 29549584 [TBL] [Abstract][Full Text] [Related]
47. Expression of Endothelial Cell Injury Marker Cd146 Correlates with Disease Severity and Predicts the Renal Outcomes in Patients with Diabetic Nephropathy. Fan Y; Fei Y; Zheng L; Wang J; Xiao W; Wen J; Xu Y; Wang Y; He L; Guan J; Wei J; He JC; Wang N Cell Physiol Biochem; 2018; 48(1):63-74. PubMed ID: 30001528 [TBL] [Abstract][Full Text] [Related]
48. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling. Han W; Ma Q; Liu Y; Wu W; Tu Y; Huang L; Long Y; Wang W; Yee H; Wan Z; Tang R; Tang H; Wan Y Phytomedicine; 2019 Apr; 57():203-214. PubMed ID: 30785016 [TBL] [Abstract][Full Text] [Related]
49. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration. Fang Q; Zhao L; Wang Y; Zhang Y; Li Z; Pan Y; Kanchana K; Wang J; Tong C; Li D; Liang G Toxicol Appl Pharmacol; 2015 Jan; 282(2):129-38. PubMed ID: 25447405 [TBL] [Abstract][Full Text] [Related]
50. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Malik S; Suchal K; Khan SI; Bhatia J; Kishore K; Dinda AK; Arya DS Am J Physiol Renal Physiol; 2017 Aug; 313(2):F414-F422. PubMed ID: 28566504 [TBL] [Abstract][Full Text] [Related]
51. Enalapril treatment increases T cell number and promotes polarization towards M1-like macrophages locally in diabetic nephropathy. Cucak H; Nielsen Fink L; Højgaard Pedersen M; Rosendahl A Int Immunopharmacol; 2015 Mar; 25(1):30-42. PubMed ID: 25598292 [TBL] [Abstract][Full Text] [Related]
52. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT-1-TREM-1 pathway in diabetic nephropathy. Zhang X; Zhao Y; Zhu X; Guo Y; Yang Y; Jiang Y; Liu B J Cell Physiol; 2019 May; 234(5):6917-6926. PubMed ID: 30478987 [TBL] [Abstract][Full Text] [Related]
53. [Effects and mechanisms of huangkui capsule ameliorating renal fibrosis in diabetic nephropathy rats via inhibiting oxidative stress and p38MAPK signaling pathway activity in kidney]. Mao ZM; Wan YG; Sun W; Chen HL; Huang YR; Shi XM; Yao J Zhongguo Zhong Yao Za Zhi; 2014 Nov; 39(21):4110-7. PubMed ID: 25775777 [TBL] [Abstract][Full Text] [Related]
54. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Samsu N Biomed Res Int; 2021; 2021():1497449. PubMed ID: 34307650 [TBL] [Abstract][Full Text] [Related]
55. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement. Li L; Zhang X; Li Z; Zhang R; Guo R; Yin Q; Yang L; Yue R; Su B; Huang S; Xu H; He C; Liu F J Diabetes Complications; 2017 Jan; 31(1):114-121. PubMed ID: 27838100 [TBL] [Abstract][Full Text] [Related]
56. SP600125 suppresses Zhang H; Liu X; Zhou S; Jia Y; Li Y; Song Y; Wang J; Wu H J Mol Endocrinol; 2018 Feb; 60(2):145-157. PubMed ID: 29273684 [TBL] [Abstract][Full Text] [Related]
57. Effects of L-Carnitine Treatment on Kidney Mitochondria and Macrophages in Mice with Diabetic Nephropathy. Ito S; Nakashima M; Ishikiriyama T; Nakashima H; Yamagata A; Imakiire T; Kinoshita M; Seki S; Kumagai H; Oshima N Kidney Blood Press Res; 2022; 47(4):277-290. PubMed ID: 35104825 [TBL] [Abstract][Full Text] [Related]
58. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Ina K; Kitamura H; Tatsukawa S; Takayama T; Fujikura Y; Shimada T Med Electron Microsc; 2002 Jun; 35(2):87-95. PubMed ID: 12181650 [TBL] [Abstract][Full Text] [Related]
59. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Xiong G; Tao L; Ma WJ; Gong MJ; Zhao L; Shen LJ; Long CL; Zhang DY; Zhang YY; Wei GH Eur Rev Med Pharmacol Sci; 2020 Feb; 24(3):1316-1324. PubMed ID: 32096161 [TBL] [Abstract][Full Text] [Related]
60. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Wang S; Li Y; Fan J; Zhang X; Luan J; Bian Q; Ding T; Wang Y; Wang Z; Song P; Cui D; Mei X; Ju D Cell Death Dis; 2017 Jul; 8(7):e2937. PubMed ID: 28726774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]